Skip to main content
Log in

Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work we are discussing RF magnetron sputter deposition of Sb2S3 thin films, postdeposition thermal processing, and the material characterization. After thermal treatment at 300 °C in N2/S environment, films were crystallized in orthorhombic structure, which was determined by XRD and Raman spectroscopy. Crystallite size, lattice parameters, strain, texture coefficient and degree of preferred orientation are reported. AFM and SEM images of the annealed films revealed a compact and uniform surface, composed of grains of large-size in the order of micrometers and well-defined rhombic geometry. Elemental analysis by EDXS showed a slight sulfur excess in the films. Optical properties and electronic band to band transitions were determined by spectroscopic ellipsometry. The dielectric function of Sb2S3 films was well represented by a Tauc–Lorentz and Lorentz oscillator models collection. Optical constants n and k revealed notable differences caused by thermal treatment, which are consistent with amorphous (as deposited) and polycrystalline (annealed) film properties, such as increase in E g and lowering of n and k values. The optical band gap of the annealed films from the ellipsometric measurements was in the range of 1.63–1.7 eV with an absorption coefficient larger than 104 cm−1 in the above band gap region. The films showed p-type conductivity and photo-response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Koc, A.M. Mamedov, E. Deligoz, H. Ozisik, Sol. State Sci. 14, 1211 (2012)

    Article  Google Scholar 

  2. L.P. Deshmukh, S.G. Holikatti, B.P. Rane, B.M. More, P.P. Hankare, J. Electrochem. Soc. 141, 1779 (1994)

    Article  Google Scholar 

  3. A.M. Salem, M. Soliman Selim, J. Phys. D Appl. Phys. 34, 12 (2001)

    Article  Google Scholar 

  4. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 82, 347 (2003)

    Article  Google Scholar 

  5. H. Maghraoui-Meherzi, T. Ben Nasr, N. Kamoun, M. Dacharoui, Phys. B 405, 3101 (2010)

    Article  Google Scholar 

  6. F. Perales, G. Lifante, F. Agullo-Rueda, C. de las Heras, J. Phys. D Appl. Phys. 40, 2440 (2007)

    Article  Google Scholar 

  7. F. Aousgi, M. Kanzari, Curr. Appl. Phys. 13, 262 (2013)

    Article  Google Scholar 

  8. M. Haj Lakhdar, B. Ouni, M. Amlouk, Optik 125, 2295 (2014)

    Article  Google Scholar 

  9. R. Boughalmi, A. Boukhachem, M. Kahlaoui, H. Maghraoui, M. Amlouk, Mater. Sci. Semicond. Proc. 26, 593 (2014)

    Article  Google Scholar 

  10. K.Y. Rajpure, C.H. Bhosale, J. Phys. Chem. Solids 61, 561 (2000)

    Article  Google Scholar 

  11. A.A. El-Shazly, M.A.M. Seyam, M.M. El-Samanoudy, A.H. Ammar, E.M. Assim, Appl. Surf. Sci. 189, 129 (2002)

    Article  Google Scholar 

  12. S. Mahanty, J.M. Merino, M. León, J. Vac. Sci. Technol. A 15, 3060 (1997)

    Article  Google Scholar 

  13. K.Y. Rajpure, C.H. Bhosale, Mater. Chem. Phys. 73, 6 (2002)

    Article  Google Scholar 

  14. J. Escorcia-Garcia, D. Becerra, M.T.S. Nair, P.K. Nair, Thin Sol. Film. 569, 28 (2014)

    Article  Google Scholar 

  15. V.V. Killedar, C.D. Lokhande, C.H. Bhosale, Mater. Chem. Phys. 47, 104 (1997)

    Article  Google Scholar 

  16. S. Zhang, H. Wan, L. Xu, W. Huang, G. Huang, Long Jin-Ping, P. Peng, Int. J. Mod. Phys. B 28, 1450150 (2014)

    Article  Google Scholar 

  17. O. Savadogo, K.C. Mandal, Appl. Phys. Lett. 63, 228 (1993)

    Article  Google Scholar 

  18. S. Messina, M.T.S. Nair, P.K. Nair, Thin Sol. Film. 517, 2503 (2009)

    Article  Google Scholar 

  19. K.F. Abd-El-Rahman, A.A.A. Darwish, Curr. Appl. Phys. 11, 1265 (2011)

    Article  Google Scholar 

  20. M.Y. Versavel, J.A. Haber, Thin Sol. Film. 515, 7171 (2007)

    Article  Google Scholar 

  21. J.N. Hilfiker, R.A. Synowicki, H.G. Tompkins, Soc. Vac. Coat. 505, 511 (2008)

    Google Scholar 

  22. D. R. Askeland, P. P. Fulay, W. J. Wright, The Science and Engineering of Materials, 6th edn. (Cengage Learning, Stamford, CT, 2011), p. 921

    Google Scholar 

  23. R.E. Dinnebier, S.J.L. Billinge, Powder Diffraction, Theory and Practice (RSC Publishing, Cambridge, 2008), p. 142

    Book  Google Scholar 

  24. D. Gupta, Diffusion Processes in Advanced Technological Materials (Springer, New York, 2005), p. 374

    Book  Google Scholar 

  25. M. Kang, S.W. Kim, Y. Kim, J. Ryu, J. Korean Phys. Soc. 57, 389 (2010)

    Article  Google Scholar 

  26. C.S. Barret, T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles, and Data, 3rd edn. (McGraw Hill, New York, 1996), p. 205

    Google Scholar 

  27. H.R. Moutinho, M.M. Al-Jassim, D.H. Levi, P.C. Dippo, L.L. Kazmerski, J. Vac. Sci. Technol. A 16, 1251 (1998)

    Article  Google Scholar 

  28. S. Kharbish, E. Libowitzky, A. Beran, Eur. J. Mineral. 21, 325 (2009)

    Article  Google Scholar 

  29. P. Makreski, G. Petrusevski, S. Ugarkovic, G. Jovanovski, Vib. Spectrosc. 68, 177 (2013)

    Article  Google Scholar 

  30. P.G. Sheikhiabadi, M. Salavati-Niasari, F. Davar, Mater. Lett. 71, 168 (2012)

    Article  Google Scholar 

  31. M. Salavati-Niasari, D. Ghanbari, F. Davar, J. Alloy. Compd. 488, 442 (2009)

    Article  Google Scholar 

  32. M. Yousefi, M. Sabet, M. Salavati-Niasari, H. Emadi, J. Clust. Sci. 23, 511 (2012)

    Article  Google Scholar 

  33. G.E. Jellison Jr., F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)

    Article  Google Scholar 

  34. Erratum, Jellison, Jr., F. A. Modine Appl. Phys. Lett. 69, 2137 (1996)

  35. M. Schubert, T. Hofmann, C.M. Herzinger, W. Dollase, Thin Sol. Film. 455–456, 619 (2004)

    Article  Google Scholar 

  36. D.V. Likhachev, N. Malkova, L. Poslavsky, Thin Sol. Film. 589, 844 (2015)

    Article  Google Scholar 

  37. Md Mosaddeq-ur-Rahman, G. Yu, K.M. Krishna, T. Soga, J. Watanabe, T. Jimbo, M. Umeno, Appl. Optics 37, 691 (1998)

    Article  Google Scholar 

  38. S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, A. Shah, Sol. Energ. Mat. Sol. C. 90, 2960 (2006)

    Article  Google Scholar 

  39. S. Faÿ, J. Steinhauser, S. Nicolay, C. Ballif, Thin Sol. Film. 518, 2961 (2010)

    Article  Google Scholar 

  40. M. Haj Lakhdar, B. Ouni, M. Amlouk, Mater. Sci. Semicond. Process. 19, 32 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Maria Luisa Ramón for XRD measurements; José Campos Alvarez for SEM images, EDXS measurements and general assistance; Gildardo Casarrubias Segura for technical assistance in sputtering and AFM equipments, and Raúl Sánchez Zeferino (UNISON, México) for Raman measurements. This work at IER-UNAM was partially supported by the project CeMIE-Sol 207450/P28. Medina-Montes thanks the postdoctoral fellowship of UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Montes, M.I., Montiel-González, Z., Paraguay-Delgado, F. et al. Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films. J Mater Sci: Mater Electron 27, 9710–9719 (2016). https://doi.org/10.1007/s10854-016-5033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5033-0

Keywords

Navigation