Skip to main content
Log in

On the use of non-MPB lead zirconium titanate (PZT) granules for piezoelectric ceramic–polymer sensorial composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Modern flexible and sensitive sensors based on polymer–ceramic composites employ lead zirconate titanate (PZT) granulates having the morphotropic phase boundary (MPB) composition as the piezo active ingredient, as this composition gives the best properties in fully ceramic piezoelectric sensors. In this study, the possibility of using PZT granulates with compositions, which are not in the MPB region of the PZT phase diagram was investigated. Random 0–3 PZT–epoxy composites were prepared for the complete composition range of PZT ceramics [Pb(ZrxTi(1−x))0.99Nb0.01O3] with x ranging from x = 0 to x = 0.80. Piezoelectric and dielectric properties of such composites were systematically studied. It is shown that the highest voltage sensitivity (i.e. g33) of the piezoelectric composites is obtained for composition with much lower Zr levels (x < 0.1) than the MPB composition. The shift in optimal composition is related to shift in dielectric constant of PZT as a function of the Zr concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971)

    Google Scholar 

  2. E. Boucher, B. Guiffard, L. Lebrun, D. Guyomar, Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn-and (Mn, F)-doped lead zirconate titanate ceramics. Ceram. Int. 32, 479–485 (2006)

    Article  Google Scholar 

  3. M. Pereira, A. Peixoto, M. Gomes, Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. J. Eur. Ceram. Soc. 21, 1353–1356 (2001)

    Article  Google Scholar 

  4. A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (John Wiley & Sons, 2003)

  5. J.F. Tressler, S. Alkoy, R.E. Newnham, Piezoelectric sensors and sensor materials. J. Electroceram. 2, 257–272 (1998)

    Article  Google Scholar 

  6. S.-Y. Chu, T.-Y. Chen, I.T. Tsai, W. Water, Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device. Sens. Actuators A 113, 198–203 (2004)

    Article  Google Scholar 

  7. R.E. Newnham, Composite electroceramics. Ferroelectrics 68, 1–32 (1986)

    Article  Google Scholar 

  8. F. Li, R. Zuo, Bismuth sodium titanate based lead-free ceramic/epoxy 1–3 composites: fabrication and electromechanical properties. J. Mater. Sci.: Mater. Electron. 25, 2730–2736 (2014)

    Google Scholar 

  9. M.T. Sebastian, H. Jantunen, Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7, 415–434 (2010)

    Google Scholar 

  10. P.K. Mahato, S. Sen, Effect of surface modification of ceramic particles by SDS on the electrical properties of PZT–PVDF and BT–PVDF composites: interface effect. J. Mater. Sci.: Mater. Electron. 26, 2969–2976 (2015)

    Google Scholar 

  11. S. Dalle Vacche, Y. Leterrier, V. Michaud, D. Damjanovic, A.B. Aebersold, J.-A.E. Månson, Effect of interfacial interactions on the electromechanical response of poly (vinylidene fluoride–trifluoroethylene)/BaTiO 3 composites and its time dependence after poling. Compos. Sci. Technol. 114, 103–109 (2015)

    Article  Google Scholar 

  12. F. Chengju, M. Wei, Q. Yan, H. Zhixiong, G. Dongyun, Damping property of epoxy-based composite embedded with sol–gel-derived Pb (Zr0. 53Ti0. 47) O3 thin film. J. Mater. Sci.: Mater. Electron. 22, 911–914 (2011)

    Google Scholar 

  13. C. Bowen, H. Kim, P. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014)

    Article  Google Scholar 

  14. E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)

    Article  Google Scholar 

  15. M.C. Araújo, C. Costa, S. Lanceros-Méndez, Evaluation of dielectric models for ceramic/polymer composites: effect of filler size and concentration. J. Non-Cryst. Solids 387, 6–15 (2014)

    Article  Google Scholar 

  16. T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328–4332 (1982)

    Article  Google Scholar 

  17. C. Dias, D. Das-Gupta, Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3, 706–734 (1996)

    Article  Google Scholar 

  18. J. Sheen, Z.-W. Hong, C.-W. Su, H.-C. Chen, Microwave measurements of dielectric constants by exponential and logarithmic mixture equations. Prog. Electromagn. Res. 100, 13–26 (2010)

    Article  Google Scholar 

  19. H. Khanbareh, S. van der Zwaag, W. Groen, Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate–epoxy composites. Smart Mater. Struct. 23, 105030 (2014)

    Article  Google Scholar 

  20. N. James, U. Lafont, S. van der Zwaag, W. Groen, Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT–ionomer composites. Smart Mater. Struct. 23, 055001 (2014)

    Article  Google Scholar 

  21. N.K. James, D. van den Ende, U. Lafont, S. van der Zwaag, W.A. Groen, Piezoelectric and mechanical properties of structured PZT–epoxy composites. J. Mater. Res. 28, 635–641 (2013)

    Google Scholar 

  22. I. Babu, G. de With, Highly flexible piezoelectric 0–3 PZT–PDMS composites with high filler content. Compos. Sci. Technol. 91, 91–97 (2014)

    Article  Google Scholar 

  23. E. Venkatragavaraj, B. Satish, P. Vinod, M. Vijaya, Piezoelectric properties of ferroelectric PZT–polymer composites. J. Phys. D Appl. Phys. 34, 487 (2001)

    Article  Google Scholar 

  24. B. Chambion, L. Goujon, L. Badie, Y. Mugnier, C. Barthod, C. Galez et al., Optimization of the piezoelectric response of 0–3 composites: a modeling approach. Smart Mater. Struct. 20, 115006 (2011)

    Article  Google Scholar 

  25. D. van den Ende, B. Bory, W. Groen, S. van der Zwaag, Improving the d33 and g33 properties of 0–3 piezoelectric composites by dielectrophoresis. J. Appl. Phys. 107, 024107 (2010)

    Article  Google Scholar 

  26. X. Lou, Polarization fatigue in ferroelectric thin films and related materials. J. Appl. Phys. 105, 024101 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Smartmix funding program (Grant No. SMVA06071), as part of the “Smart systems based on integrated Piezo” program. The authors gratefully acknowledge the technical support provided by Dr. I. Katsouras of the Max-Planck Institute for Polymer Research at Mainz for the hysteresis loop measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Shaji Karapuzha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaji Karapuzha, A., Kunnamkuzhakkal James, N., van der Zwaag, S. et al. On the use of non-MPB lead zirconium titanate (PZT) granules for piezoelectric ceramic–polymer sensorial composites. J Mater Sci: Mater Electron 27, 9683–9689 (2016). https://doi.org/10.1007/s10854-016-5029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5029-9

Keywords

Navigation