Skip to main content
Log in

Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work electrical properties of an epoxy resin (DGEBA/OTBG) reinforced with alumina (10 nm) or zinc oxide (100 nm) were studied. The dielectric breakdown, relative permittivity, conductivity and dielectric loss were measured in five different nanocomposites for each nanoparticle varying temperature whenever possible. An increase of 50 % of the dielectric breakdown at room temperature in nanocomposites reinforced with only 0.4 % of as-received alumina nanoparticles was obtained. Aiming to understand a relation between state of dispersion of nanofillers and some properties a filler dispersion index Nearest Neighbor Distance was calculated based on FIB/FESEM images of the nanocomposites. This index is related to the dispersion of breakdown probability data and to the best of our knowledge it is not discussed in any other work in the literature. Dielectric spectra provided evidences of the decrease of mobility of charge carriers in lower filler loading nanocomposites due to trapping of charge carriers at the interphase. The percolation threshold of the interphase was reached at higher filler loading nanocomposites than 6 % phr, where the charge carriers have more mobility leading to paths of conductivity. These results corroborates with the drop observed in the dielectric breakdown for percolated nanocomposites. Another important issue found in this work, is that there was no change in the free-volume of the nanocomposites compared to neat epoxy. It is possible to state that in our system free-volume can not explain the variation on dielectric behavior as pointed out in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.K Nelson, J.C. Fothergill, L.A. Dissado, W. Peasgood, Towards an understanding of nanometric dielectrics. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 295–298 (2002). doi:10.1109/CEIDP.2002.1048793

  2. J.K. Nelson, Y. Hu, J. Thiticharoenpong, Electrical properties of TiO-2 nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 719–722 (2003)

  3. S. Raetzke, Y. Ohki, T. Imai, T. Tanaka, J. Kindersberger, Tree initiation characteristics of epoxy resin and epoxy/clay nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 16, 1473–1480 (2009)

    Article  Google Scholar 

  4. J. Wu, T. Izuka, K. Monden, T. Tanaka, Characteristics of initial trees of 30 to 60 μm length in epoxy/silica nanocomposite. IEEETrans. Dielectr. Electr. Insul. 19, 312–320 (2012)

    Article  Google Scholar 

  5. S. Alapati, M.J. Thomas, Electrical treeing and the associated PD characteristics in LDPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19, 697–704 (2012)

    Article  Google Scholar 

  6. Y. Chen, T. Imai, Y. Ohki, T. Tanaka, Tree initiation phenomena in nanostrutured epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 17, 1509–1515 (2010)

    Article  Google Scholar 

  7. Z. Li, K. Okamoto, Y. Ohki, T. Tanaka, The role of nano and micro particles on partial discharge and breakdown strength in epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 18, 675–681 (2011)

    Article  Google Scholar 

  8. S. Li, G. Yin, G. Chen, J. Li, S. Bai, L. Zhong, Y. Zhang, Q. Lei, Short-term breakdown and long-term failure in nanodielectrics: A review. IEEE Trans. Dielectr. Electr. Insul. 17, 1523–1535 (2010)

    Article  Google Scholar 

  9. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, Candidate mechanism controlling the electrical characteristics of silica/XLPE nanodielectrics. J. Mater. Sci. 22, 3789–3799 (2007)

    Article  Google Scholar 

  10. R.C. Smith, C. Liang, M. Landry, J.K. Nelson, L.S. Schadler, The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15, 187–196 (2008)

    Article  Google Scholar 

  11. L.S. Schadler, J.K. Nelson, C. Calebrese, A. Travelpiece, D.L. Schweickart, High temperature breakdown strength and voltage endurance characteristics of nanofilled polyamideimide. IEEE Trans. Dielectr. Electr. Insul. 19, 2090–2101 (2012)

    Article  Google Scholar 

  12. Z. Wang, T. Izuka, M. Kozako, Y. Ohki, T. Tanaka, Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength: part II breakdown strength. IEEE Trans. Dielectr. Electr. Insul. 18, 1973–1983 (2011)

    Article  Google Scholar 

  13. G. Iyer, R.S. Gorur, R. Richert, A. Krivda, L.E. Schmidt, Dielectric properties of epoxy based nanocomposites for high voltage insulation. IEEE Trans. Dielectr. Electr. Insul. 18, 659–666 (2011)

    Article  Google Scholar 

  14. G. Polizos, E. Tuncer, I. Sauers, K.L. More, Properties of a nanodielectric cryogenic resin. Appl. Phys. Lett. 96, 152903 (2010)

    Article  Google Scholar 

  15. S. Singha, M.J. Thomas, Influence of filler loading on dielectric properties of epoxy ZnO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 16, 531–542 (2009)

    Article  Google Scholar 

  16. P. Preetha, M.J. Thomas, AC breakdown characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 18, 1526–1534 (2011)

    Article  Google Scholar 

  17. G. Polizos, E. Tuncer, I. Sauers, K.L. More, Physical properties of epoxy resin/titanium dioxide nanocomposites. Polym. Eng. Sci. 51, 87–93 (2011)

    Article  Google Scholar 

  18. J.J. Artbauer, Eletrical strength of polymers. J Phys. D: Appl. Phys. 29, 446–456 (1996)

    Article  Google Scholar 

  19. J.K. Nelson, L.A. Utracki, R.K. MacCrone, C.W. Reed, Role of the interface in determining the dielectric properties of nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielect. Phenom. 314–317 (2004). doi:10.1109/CEIDP.2004.1364251

  20. J.K. Nelson, Y.J. Hu, Nanocomposites dielectrics-properties and implications. J. Phys. D Appl. Phys. 38, 213–222 (2005)

    Article  Google Scholar 

  21. L.A. Utracki, Free volume of molten and glassy polystyrene and its nanocomposites. J. Polym. Sci. B: Polym. Phys. 46, 2504–2518 (2008)

    Article  Google Scholar 

  22. J. Asaad, E. Gomaa, I.K. Bishay, Free-volume properties of epoxy composites and its relation to macrostruture properties. Mater. Sci. Eng., A 490, 151–156 (2008)

    Article  Google Scholar 

  23. M.G. Veena, N.M. Renukappa, J.M. Raj, C. Ranganathaiah, K.N. Shivakumar, Characterization of nanosilica-filled epoxy composites for electrical and insulation applications. J. Appl. Polym. Sci. 121, 2752–2760 (2011)

    Article  Google Scholar 

  24. P. Winberg, M. Eldrup, N.J. Pedersen, M.A. van Es, F.H.J. Maurer, Free volume sizes in intercalated polyamide 6/clay nanocomposites. Polymer 46, 8239–8249 (2005)

    Article  Google Scholar 

  25. P. Winberg, M. Eldrup, F.H.J. Maurer, Nanoscopic properties of silica filled polydimethylsiloxane by means of positron annihilation lifetime spectroscopy. Polymer 45, 8253–8264 (2004)

    Article  Google Scholar 

  26. H.M. Chen, Y.C. Jean, L.J. Lee, J. Yang, J. Huang, Positron annihilation study in inorganic-polymer nanocomposites. Phys. Status Solidi C 6, 2397–2400 (2009)

    Article  Google Scholar 

  27. G. Choudalakis, A.D. Gotsis, Free volume and mass transport in polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 17, 132–140 (2012)

    Article  Google Scholar 

  28. S. Harms, K. Ratzke, F. Faupel, G.J. Schneider, L. Willner, D. Richter, Free volume of interphase in model nanocomposites studies by positron annihilation lifetime spectroscopy. Macromol 43, 10505–10511 (2010)

    Article  Google Scholar 

  29. K. Nusser, S. Neueder, G.J. Schneider, M. Meyer, W.P. Hintzen, L. Willner, A. Radulescu, D. Richter, Confirmations of silica/poly(ethylene-propylene) nanocomposites. Macromol 43, 9837–9847 (2010)

    Article  Google Scholar 

  30. G. Dublek, U. De, J. Pionteck, N.Y. Arutyunov, M. Edelmann, R.K. Rehberg, Temperature dependence of free volume in pure and silica-filled in poly(dimethyl siloxane) from positron lifetime and PVT experiments. Macromol. Chem. Phys. 206, 827–840 (2005)

    Article  Google Scholar 

  31. Q. Wang, G. Chen, Effect of nanofillers on the dielectric properties of epoxy nanocomposites. Adv. Mater. Res. 1, 93–107 (2012)

    Article  Google Scholar 

  32. G. Ioannou, A. Patsidis, G.C. Psarras, Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos. A 42, 104–110 (2011)

    Article  Google Scholar 

  33. D.N. McCarthy, H. Stoyanov, D. Rychkov, H. Ragusch, M. Melzer, G. Kofod, Increased permittivity nanocomposite dielectric by controlled interfacial interactions. Comp. Sci. Technol. 72, 731–736 (2012)

    Article  Google Scholar 

  34. P. Preetha, M.J. Thomas, R. Ranjan, Electrothermal ageing of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19, 2081–2089 (2012)

    Article  Google Scholar 

  35. G. Polizos, E. Tuncer, A.L. Agapov, D. Stevens, A.P. Sokolov, M.K. Kidder, J.D. Jacobs, H. Koerner, R.A. Vaia, K.L. More, I. Sauers, Effect of polymer-nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites. Polymer 53, 595–603 (2012)

    Article  Google Scholar 

  36. J.I. Hong, L.S. Schadler, R.W. Siegel, E. Martensson, Electrical behavior of low density polyethylene containing an inhomogeneous distribution of ZnO nanoparticles. J. Mater. Sci. 41, 5810–5814 (2006)

    Article  Google Scholar 

  37. F. Tian, Q. Lei, X. Wang, Y. Wang, Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 19, 763–769 (2012)

    Article  Google Scholar 

  38. H. Couderc, M. Fréchette, S. Savoie, M. Reading, A.S. Vaughan, Dielectric and thermal properties of boron nitride and silica epoxy composites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 64–68 (2012). doi:10.1109/ELINSL.2012.6251427

  39. C. Zhang, G.C. Stevens, The dielectric response of polar and non-polar nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15, 606–617 (2008)

    Article  Google Scholar 

  40. W.T. Wan, D.M. Yu, L.B. Huang, Y.C. Xie, X.S. Guo, J. Zhang, Size effect of Al2O3 nanowires on the molecular relaxation in epoxy composites. Macromol. Chem. Phys. 209, 1056–1064 (2008)

    Article  Google Scholar 

  41. P. Maity, S. Basu, V. Parameswaran, N. Gupta, On the size dielectric properties of the interphase in epoxy-alumina nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 17, 1665–1675 (2010)

    Article  Google Scholar 

  42. D. Tan, Y. Cao, E. Tuncer, P. Irwin, Nanofiller dispersion in polymer dielectrics. Mater. Sci. Appl. 4, 6–15 (2013)

    Google Scholar 

  43. M. Kurimoto, H. Okubo, K. Kato, M. Hanai, Y. Hoshina, M. Takei, N. Hayakawa, Dielectric properties of epoxy/alumina nanocomposites influenced by control of micrometric agglomerates. IEEE Trans. Dielectr. Electr. Insul. 17, 662–670 (2010)

    Article  Google Scholar 

  44. C. Calebrese, L. Hui, L.S. Schadler, J.K. Nelson, A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 18, 938–945 (2011)

    Article  Google Scholar 

  45. L. Hui, R.C. Smith, X. Wang, J.K. Nelson, L.S. Schadler, Quantification of particulate mixing in nanocomposites. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 317–320

  46. T.J. Lewis, Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11, 739–753 (2004)

    Article  Google Scholar 

  47. G. Tsagaropoulos, A. Eisenberg, Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymer: similarities and differences with random ionomers. Macromol. 28, 6067–6077 (1995)

    Article  Google Scholar 

  48. T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, Proposal of a multi-core model for polymer nanocomposites dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005)

    Article  Google Scholar 

  49. S. Raetzke, J. Kindersberger, Resistance to high voltage arcing and the resistance to tracking and erosion for silicone/SiO2 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 17, 607–614 (2010)

    Article  Google Scholar 

  50. T. Andritsch, R. Kochetov, P.H.F. Morshuis, J.J. Smit, Dielectric properties and space charge behavior of MgO-epoxy nanocomposites. Proc. Int. Conf. Solid Dielectr. 1–4 (2010). doi:10.1109/ICSD.2010.5568012

  51. S. Li, G. Yin, S. Bai, J. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011)

    Article  Google Scholar 

  52. C. Zou, J.C. Fothergill, S.W. Rowe, The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 15, 106–117 (2008)

    Article  Google Scholar 

  53. C. Zhang, G.C. Stevens, The dielectric behaviour of the interface in polymer nanocomposites. Proc. Int. Conf. Solid Dielectr

  54. R.R. Patel, N. Gupta, Effect of humidity on the complex permittivity of epoxy-based nanodielectrics with metal oxide fillers. Int Trans Electr Energy Syst (2012). doi:10.1002/etep.1663

    Google Scholar 

  55. L. Hui, L.S. Schadler, J.K. Nelson, Influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20, 641–653 (2013)

    Article  Google Scholar 

  56. P.J. Clark, F.C. Evans, Distance to nearest neighbor as a measureof spatial relantionships in populations. Ecology 35, 445–453 (1954)

    Article  Google Scholar 

  57. S.J. Tao, Positronium annihilation in molecular substances. J. Chem. Phys. 56, 5499–5510 (1972)

    Article  Google Scholar 

  58. M. Eldrup, D. Lightbody, J.N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic. J. Chem. Phys. 63, 51–58 (1981)

    Google Scholar 

  59. Y. Wang, H. Nakanishi, Y. Jean, Positron annihilation in amine-cured epoxy polymers-pressure dependence. J. Polym. Sci. B 28, 1431–1441 (1990)

    Article  Google Scholar 

  60. ATSM D149-09, Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies (2009)

  61. IEC 60464-2, Varnishes used for electrical insulation: method test (2001)

  62. J.K. Nelson, J. Dryzek, B.C. Benicewicz, M. Bell, Y. Huang, T.M. Krentz, L.S. Schadler, Free-volume in nanodielectrics. in IEEE Proc. 11th Int. Conf. Prop. Appl. Dielectr. Mater (2015), pp. 40–43. ISBN:978-1-4799-8903-4

  63. M.M. Ueki, M. Zanin, Influence of additives on the dielectric strength of high-density polyethylene. IEEE Trans. Dielectr. Electr. Insul. 6, 876–881 (1999)

    Article  Google Scholar 

  64. I.A. Tsekmes, R. Kochetov, P.H.F. Morshuis, J.J. Smit, The role of particle distribution in the dielectric response of epoxy-boron nitride nanocomposites. J. Mater. Sci. 50, 1175–1186 (2015)

    Article  Google Scholar 

  65. Y. Wang, C. Wang, K. Xiao, Investigation of the electrical properties of XLPE/SiC nanocomposites. Polym. Test 50, 145–151 (2016)

    Article  Google Scholar 

  66. H. Courdec, E. David, M. Fréchette, S. Savoie, Study of dielectric relaxation of epoxy composites containing micro and nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 20, 592–600 (2013)

    Article  Google Scholar 

  67. I. Preda, J. Castellon, S. Agnel, H. Courdec, M. Fréchette, F. Gao, R. Nigmatullin, S. Thompson, A.F. Vaessen, Dielectric response of various partially cured epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20, 580–591 (2013)

    Article  Google Scholar 

  68. R. Quia, C. Brinson, Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69, 491–499 (2008)

    Article  Google Scholar 

  69. I.A. Tsekmes, P.H.F. Morshuis, J.J. Smit, R. Kochetov, The influence of interfaces and water uptake on the dielectric response of epoxy-boron nitride nanocomposites. J. Mater. Sci. 50, 3929–3941 (2015)

    Article  Google Scholar 

  70. L.A. Dissado, R.M. Hill, Anomalous low frequency dispersion: a near DC conductivity in disordered low dimensional materials. J. Chem. Soc. Faraday Trans. 80, 291–319 (1984)

    Article  Google Scholar 

  71. E. Schlosser, A. Schonhals, Dielectric relaxation in polymeric solids part I: a new interpretation of the shape of the dielectric relaxation function. J. Coll. Polym. Sci. 267, 963–969 (1989)

    Article  Google Scholar 

  72. O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposites films. J. Mater. Sci.: Mater. Electron. 27, 3591–3598 (2016)

    Google Scholar 

  73. N. Shukla, A.K. Thakur, A. Shukla, R. Chatterjee, Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposites films. J. Mater. Sci.: Mater. Electron. 25, 2759–2770 (2014)

    Google Scholar 

Download references

Acknowledgments

The financial support of activities by WEG, CAPES, CNPq and ITM are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo do Nascimento or Luiz Antônio Ferreira Coelho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, E., Ramos, A., Windmoller, D. et al. Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides. J Mater Sci: Mater Electron 27, 9240–9254 (2016). https://doi.org/10.1007/s10854-016-4962-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4962-y

Keywords

Navigation