Skip to main content
Log in

Structural, dielectric and AC conductivity studies of Zn substituted nickel ferrites prepared by combustion technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of zinc doped nickel ferrites having the chemical formula Ni1−xZnxFe2O4 [x = 0.0, 0.25, 0.50, 0.75, 1.0] were synthesized by combustion method. The powder X-ray diffraction results confirm the formation of single phase cubic spinel structure. The lattice parameter was found to increase from 8.348 to 8.443 Å with increase in the Zn content. Average crystallite size calculated using Debye–Scherrer equation and Williamson–Hall plots confirms the nano crystalline nature of the samples. The EDAX analysis indicates the correct elemental composition of the synthesized powders. Fourier transform infrared spectra show the characteristic peaks of Ni–Zn spinel ferrites. The morphological features of the powder were examined by SEM and reveal the fine crystalline nature of the powder. A systematic study on the dielectric properties such as dielectric constant (ɛ′), dielectric loss tangent (tan δ) and AC conductivity (σac) were investigated as a function of Zn content and frequency in the range from 100 Hz to 1 MHz at room temperature. Complex impedance behavior was explained by means of the cole–cole plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Kondo, T. Chiba, S. Yamada, Effect of microstructure on magnetic properties of Ni–Zn ferrites. J. Magn. Magn. Mater. 541, 254–255 (2003)

    Google Scholar 

  2. J. Wang, Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties. Mater. Sci. Eng. B 127(1), 81–84 (2006)

    Article  Google Scholar 

  3. A. Kale, S. Gubbala, R.D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite synthesized by the revere micelle technique. J. Magn. Magn. Mater. 277(3), 350–358 (2004)

    Article  Google Scholar 

  4. P.Y. Lee, K. Ishizaka, H. Suematsu, W. Jiang, Magnetic and gas sensing property of nanosized NiFe2O4 powders synthesized by pulsed wire discharge. J. Nanopart. Res. 8(1), 29–35 (2006)

    Article  Google Scholar 

  5. K.V.P.M. Shafi, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lendvai, I. Felner, Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J. Phys. Chem. B 101(33), 6409–6414 (1997)

    Article  Google Scholar 

  6. D.-H. Chen, X.-R. He, Synthesis of nickel ferrite nanoparticles by sol–gel method. Mater. Res. Bull. 36(7–8), 1369–1377 (2001)

    Article  Google Scholar 

  7. M. Salavati-Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron 28(8), 1455–1458 (2009)

    Article  Google Scholar 

  8. R. Kalai Selvan, C.O. Augustin, L. John Berchmans, R. Saraswathi, Combustion synthesis of CuFe2O4. Mater. Res. Bull. 38(1), 41–54 (2003)

    Article  Google Scholar 

  9. A. Verma, T.C. Goel, R.G. Mendiratta, M.I. Alam, Dielectric properties of NiZn ferrites prepared by the citrate precursor method. Mater. Sci. Eng. B 60(2), 156–162 (1999)

    Article  Google Scholar 

  10. T. Abraham, Economics of ceramic magnets. Am. Ceram. Soc. Bull. 73(8), 62 (1994)

    Google Scholar 

  11. U.R. Lima, M.C. Nasar, R.S. Nasar, M.C. Rezende, J.H. Araujo, Ni–Zn nanoferrite for radar-absorbing material. J. Magn. Magn. Mater. 320(10), 1666–1670 (2008)

    Article  Google Scholar 

  12. W. Yan, W. Jiang, Q. Zhang, Y. Li, H. Wang, Structure and magnetic properties of nickel–zinc ferrite microspheres synthesized by solvothermal method. Mater. Sci. Eng. B 171, 144–148 (2010)

    Article  Google Scholar 

  13. V. Sreeja, S. Vijayanand, S. Deka, P.A. Joy, Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interact. 183, 99–107 (2008)

    Article  Google Scholar 

  14. S.A. Saafan, T.M. Meaz, E.H. El-Ghazzawy, M.K. El Nimr, M.M. Ayad, M. Bakr, A.C. and D.C. conductivity of NiZn ferrite nanoparticles in wet and dry conditions. J. Magn. Magn. Mater. 322, 2369–2374 (2010)

    Article  Google Scholar 

  15. K. Rama Krishna, K. Vijaya Kumar, D. Ravinder, Structural and electrical conductivity studies in nickel–zinc ferrite. Adv. Mater. Phys. Chem. 2, 185–191 (2012)

    Article  Google Scholar 

  16. M. Zhang, Z. Zi, Q. Liu, P. Zhang, X. Tang, J. Yang, X. Zhu, Y. Sun, J. Dai, Size effects on magnetic properties of Ni0.5Zn0.5Fe2O4 prepared by sol–gel method. Adv. Mater. Sci. Eng. ID 609819 (2013)

  17. A. Hajalilou, M. Hashim, H.M. Kamari, Structure and magnetic properties of Ni0.64Zn0.36Fe2O4 nanoparticles synthesized by high-energy milling and subsequent heat treatment. J. Mater. Sci. Mater. Electron. 26(3), 1709–1718 (2015)

    Article  Google Scholar 

  18. S. Balaji, R. Kalai Selvan, L. John Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Combustion synthesis and characterization of Sn2+ substituted nonocrystalline NiFe2O4. Mater. Sci. Eng. B 119, 119–124 (2005)

    Article  Google Scholar 

  19. J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959)

    Google Scholar 

  20. P. Scherrer, Gottinger Nachrichten Gesell. 2, 98 (1918)

    Google Scholar 

  21. C.-C. Hwang, J.-S. Tsai, T.-H. Huang, Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Mater. Chem. Phys. 93(2–3), 330–336 (2005)

    Article  Google Scholar 

  22. C. Rath, S. Anand, R.P. Das, K.K. Sahu, S.D. Kulkarni, S.K. Date, N.C. Mishra, Dependence on cation distribution of particle size, lattice parameter and magnetic properties in nanosize Mn–Zn ferrite. J. Appl. Phys. 91(4), 2211–2215 (2002)

    Article  Google Scholar 

  23. S.M. Hoque, Md.A Choudhury, Md. FakhrulIslam, Characterization of Ni–Cu mixed spinel ferrite. J. Magn. Magn. Mater. 251(3), 292–303 (2002)

    Article  Google Scholar 

  24. M. Sorescu, L. Diamandescu, R. Peelamedu, R. Roy, P. Yadoji, Structural and magnetic properties of NiZn ferrites prepared by microwave sintering. J. Magn. Magn. Mater. 279(2–3), 195–201 (2004)

    Article  Google Scholar 

  25. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727 (1955)

    Article  Google Scholar 

  26. P. Priyadharsini, A. Pradeep, P. Sambasiva Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116(1), 207–213 (2009)

    Article  Google Scholar 

  27. M. Kaiser, Effect of nickel substitutions on some properties of Cu–Zn ferrites. J. Alloys Compd. 468(1–2), 15–21 (2009)

    Article  Google Scholar 

  28. M. Arshed, M. Siddique, M. Anwar-ul-Islam, N.M. Butt, T. Abbas, M. Ahmed, Site occupancy dependence of magnetism in Ni–Zn ferrites by the Mossbauer effect. Solid State Commun. 93(7), 599–602 (1995)

    Article  Google Scholar 

  29. H.S. Jayanna, B. Nagappa, E. Melagiriyappa, B.J. Madhu, G.D. Prasanna, Dielectric studies on MgxZn1−xFe2O4 nanoparticles synthesized by combustion method, in Synthesis and characterization of Nanostructured materials, Macmillan Advanced Research Series, ed. by V.Rajendran, B.Hillbrands, K.Saminathan, K.E.Geckeler (Macmillan Publishers India Ltd., 2010), pp. 295–298

  30. A.T. Raghavender, K.M. Jadhav, Dielectric properties of Al-substituted Co ferrite nanoparticles. Bull. Mater. Sci. 32(6), 575–578 (2009)

    Article  Google Scholar 

  31. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, Oxford, 1929), p. 752

    Google Scholar 

  32. K.W. Wagner, Ann. Phys. 40, 817–855 (1913)

    Article  Google Scholar 

  33. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83(1), 121–124 (1951)

    Article  Google Scholar 

  34. N. Ponpandian, P. Balaya, A. Narayanasamy, Electrical conductivity and dielectric behavior of nanocrystalline NiFe2O4 spinel. J. Phys. Condens. Matter 14(12), 3221–3238 (2002)

    Article  Google Scholar 

  35. A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208(1–2), 13–19 (2000)

    Article  Google Scholar 

  36. R.A. Andrievski, A.M. Gleze, Size effects in properties of nanomaterials. Scr. Mater. 44(8–9), 1621–1624 (2001)

    Article  Google Scholar 

  37. M.A. Ahmed, E. Ateia, L.M. Salah, A.A. El-Gamal, Structural and electrical studies on La3+ substituted Ni–Zn ferrites. Mater. Chem. Phys. 92(2–3), 310–321 (2005)

    Article  Google Scholar 

  38. I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater. 311(2), 494–499 (2007)

    Article  Google Scholar 

  39. S.A. Lokare, R.S. Devan, B.K. Chougule, Structural analysis and electrical properties of ME composites. J. Alloys Compd. 454(1–2), 471–475 (2008)

    Article  Google Scholar 

  40. E.J.W. Verwey, J.H. De Boer, Cations arrangement in a few oxides with crystal structures of the spinel type. Rec. Trav. Chim. Pays Bas 55, 531–540 (1936)

    Article  Google Scholar 

  41. A.M. El-Sayed, Electrical conductivity of nickel–zinc and Cr substituted nickel–zinc ferrites. Mater. Chem. Phys. 82(3), 583–587 (2003)

    Article  Google Scholar 

  42. K.W. Wagner, in Die Isolierstoffe der Elektrotechnik, ed. by H. Schering (Springer, Berlin, 1924)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Senguttuvan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umapathy, G., Senguttuvan, G., John Berchmans, L. et al. Structural, dielectric and AC conductivity studies of Zn substituted nickel ferrites prepared by combustion technique. J Mater Sci: Mater Electron 27, 7062–7072 (2016). https://doi.org/10.1007/s10854-016-4664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4664-5

Keywords

Navigation