Skip to main content
Log in

Low-leakage current and high-breakdown voltage GaN-on-Si (111) System with an AlGaN impurity blocking layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of different AlGaN Impurity Blocking Layer (IBL) thickness in the GaN/Si (111) structure with GaN/AlN SLs buffer on the material and electrical properties of GaN/Si (111) system was studied in detail. It is found that the insertion of AlGaN IBL can increase the (102) FWHM and decrease the (002) FWHM. Meanwhile, AlGaN IBL with an optimized thickness can further improve the surface roughness and strain-state of GaN-Si (111) system. By using Secondary Ion Mass Spectroscopy, it is found that AlGaN IBL have a strong effect in blocking the Si donor impurities originating from the Si substrate during the high temperature growth, which can decrease the leakage current while the breakdown voltage can be dramatically increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Yoshida, GaN power transistors on Si substrates for switching applications. Proc. IEEE 98, 1151–1161 (2010)

    Article  Google Scholar 

  2. Y. Hsiao, Y. Wang, C. Chang, Y. Weng, Y. Chen, K. Chen, J. Maa, E.Y. Chang, Investigation of the low-temperature AlGaN interlayer in AlGaN/GaN/AlGaN double heterostructure on Si substrate. Appl. Phys. Express 7, 115501 (2014)

    Article  Google Scholar 

  3. D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, K. Matsumoto, Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate. Appl. Phys. Express 6, 026501 (2013)

    Article  Google Scholar 

  4. S.L. Selvaraj, A. Watanabe, T. Egawa, Presented at the Device Research Conference (DRC), 2011 69th Annual, (2011)

  5. S. Iwakami, M. Yanagihara, O. Machida, E. Chino, N. Kaneko, H. Goto, K. Ohtsuka, AlGaN/GaN Heterostructure Field-Effect Transistors (HFETs) on Si substrates for large-current operation. Jpn. J. Appl. Phys. 43, L831 (2004)

    Article  Google Scholar 

  6. J.J. Freedsman, T. Egawa, Y. Yamaoka, Y. Yano, A. Ubukata, T. Tabuchi, K. Matsumoto, Normally-OFF Al2O3/AlGaN/GaN MOS-HEMT on 8 in. Si with low leakage current and high breakdown voltage (825 V). Appl. Phys. Express 7, 041003 (2014)

    Article  Google Scholar 

  7. P. Parikh, Y. Wu, L. Shen, Presented at the Energytech, Cleveland, USA, (2013)

  8. N. Yi-Qiang, H. Zhi-Yuan, Z. Jian, Y. Yao, Y. Fan, X. Peng, Z. Bai-Jun, L. Yang, Electrical properties of MOCVD-grown GaN on Si (111) substrates with low-temperature AlN interlayers. Chin. Phys. B 22, 88104 (2013)

    Article  Google Scholar 

  9. A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, A. Krost, Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking. Appl. Phys. Lett. 80, 3670 (2002)

    Article  Google Scholar 

  10. A. Dadgar, T. Hempel, J. Bläsing, O. Schulz, S. Fritze, J. Christen, A. Krost, Improving GaN-on-silicon properties for GaN device epitaxy. Phys. Status Solidi (c) 8, 1503–1508 (2011)

    Article  Google Scholar 

  11. S.L. Selvaraj, T. Suzue, T. Egawa, Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers. Electron Device Lett. IEEE 30, 587–589 (2009)

    Article  Google Scholar 

  12. J.B. Webb, H. Tang, S. Rolfe, J.A. Bardwell, Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy. Appl. Phys. Lett. 75, 953–955 (1999)

    Article  Google Scholar 

  13. X.G. He, D.G. Zhao, D.S. Jiang, Z.S. Liu, P. Chen, L.C. Le, J. Yang, X.J. Li, S.M. Zhang, J.J. Zhu, H. Wang, H. Yang, Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition. Thin Solid Films 564, 135 (2014)

    Article  Google Scholar 

  14. J. Selvaraj, S.L. Selvaraj, T. Egawa, Effect of GaN buffer layer growth pressure on the device characteristics of AlGaN/GaN high-electron-mobility transistors on Si. Jpn. J. Appl. Phys. 48, 121002 (2009)

    Article  Google Scholar 

  15. S.A. Chevtchenko, E. Cho, F. Brunner, E. Bahat-Treidel, J. Wurfl, Off-state breakdown and dispersion optimization in AlGaN/GaN heterojunction field-effect transistors utilizing carbon doped buffer. Appl. Phys. Lett. 100, 223502 (2012)

    Article  Google Scholar 

  16. G. Verzellesi, L. Morassi, G. Meneghesso, M. Meneghini, E. Zanoni, G. Pozzovivo, S. Lavanga, T. Detzel, O. Haberlen, G. Curatola, Influence of buffer carbon doping on pulse and AC behavior of insulated-gate field-plated power AlGaN/GaN HEMTs. Electron Device Lett. IEEE 35, 443–445 (2014)

    Article  Google Scholar 

  17. D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, G. Borghs, Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate removal. Appl. Phys. Lett. 97, 113501 (2010)

    Article  Google Scholar 

  18. M.A. Mastro Jr, C.R. Eddy, D.K. Gaskill, N.D. Bassim, J. Casey, A. Rosenberg, R.T. Holm, R.L. Henry, M.E. Twigg, MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates. J. Cryst. Growth 287, 610–614 (2006)

    Article  Google Scholar 

  19. S. Arulkumaran, T. Egawa, S. Matsui, H. Ishikawa, Enhancement of breakdown voltage by AlN buffer layer thickness in AlGaN/GaN high-electron-mobility transistors on 4 in. diameter silicon. Appl. Phys. Lett. 86, 3503 (2005)

    Article  Google Scholar 

  20. E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, P. Gibart, Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 79, 3230–3232 (2001)

    Article  Google Scholar 

  21. Y. Yang, P. Xiang, M. Liu, W. Chen, Z. He, X. Han, Y. Ni, F. Yang, Y. Yao, Z. Wu, Y. Liu, B. Zhang, Effect of compositionally graded AlGaN buffer layer grown by different functions of trimethylaluminum flow rates on the properties of GaN on Si (111) substrates. J. Cryst. Growth 376, 23–27 (2013)

    Article  Google Scholar 

  22. M. Kim, Y. Do, H.C. Kang, D.Y. Noh, S. Park, Effects of step-graded Al x Ga1−x N interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 79, 2713–2715 (2001)

    Article  Google Scholar 

  23. H.F. Liu, S.B. Dolmanan, L. Zhang, S.J. Chua, D.Z. Chi, M. Heuken, S. Tripathy, Influence of stress on structural properties of AlGaN/GaN high electron mobility transistor layers grown on 150 mm diameter Si (111) substrate. J. Appl. Phys. 113, 023510 (2013)

    Article  Google Scholar 

  24. D.D. Koleske, A.E. Wickenden, R.L. Henry, M.E. Twigg, Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN. J. Cryst. Growth 242, 55–69 (2002)

    Article  Google Scholar 

  25. Y.Q. Ni, Z.Y. He, F. Yang, D.Q. Zhou, Y. Yao, G.L. Zhou, Z. Shen, J. Zhong, Y. Zhen, Z.S. Wu, B.J. Zhang, Y. Liu, Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si (111) system. Jpn. J. Appl. Phys. 54, 015505 (2015)

    Article  Google Scholar 

  26. Z. He, Y. Ni, F. Yang, J. Wei, Y. Yao, Z. Shen, P. Xiang, M. Liu, S. Wang, J. Zhang, Z. Wu, B. Zhang, Y. Liu, Investigations of leakage current properties in semi-insulating GaN grown on Si (111) substrate with low-temperature AlN interlayers. J. Phys. D Appl. Phys. 47, 045103 (2014)

    Article  Google Scholar 

  27. C.C. Huang, S.J. Chang, R.W. Chuang, J.C. Lin, Y.C. Cheng, W.J. Lin, GaN grown on Si (111) with step-graded AlGaN intermediate layers. Appl. Surf. Sci. 256, 6367 (2010)

    Article  Google Scholar 

  28. G. Cong, Y. Lu, W. Peng, X. Liu, X. Wang, Z. Wang, Design of the low-temperature AlN interlayer for GaN grown on Si (111) substrate. J. Cryst. Growth 276, 381–388 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51177175, 61274039 and 61574173), the National High-tech R&D Program of China (Grant No. 2014AA032606), the Science & Technology Plan of Guangdong Province, China (Grant Nos. 2015A030312011, 2013B051000041, 2014B050505009, 2015B090903062), the Science & Technology Plan of Guangzhou, China (Grant No. 201508010048), and the Opened Fund of The State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baijun Zhang or Yang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Y., He, L., Zhou, D. et al. Low-leakage current and high-breakdown voltage GaN-on-Si (111) System with an AlGaN impurity blocking layer. J Mater Sci: Mater Electron 27, 5158–5163 (2016). https://doi.org/10.1007/s10854-016-4408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4408-6

Keywords

Navigation