Skip to main content
Log in

Effect of Li and Bi co-substituted on structural and physical properties of BaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline samples of Li and Bi co-substituted BaTiO3 were synthesized using microwave assisted heating of the starting materials. This synthesis process extraordinarily reduced the processing time to 40 min, which includes heating and the dwell durations. The room temperature powder X-ray diffraction patterns reveals that the obtained compounds were of pure BaTiO3 phase (BTO). The structural, morphological and dielectric behaviour of these compositions were studied. Improved dielectric properties have been observed with the substitute of Bi and Li. It is interesting to note that the loss tangent of the co-substituted compositions are lower than that of the parent composition and it decreases approximately with increasing extent of co-substitution. This property is quite useful to develop this material further for capacitor applications. The transition temperature has shifted from 120 °C of pure BaTiO3 towards higher temperatures to 150, 160 and 175 °C with (Bi, Li)x where x = (0.02, 0.04 and 0.08), respectively of co-substitution BaTiO3. The change is linear with the degree of co-substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic, V. Paunovic, M. Miljkovic, B. Jordovic, L. Zivkovic, J. Am. Ceram. Soc. 93, 132–137 (2010)

    Article  Google Scholar 

  2. W.S. Jung, J.H. Kim, H.T. Kim, D.H. Yoon, Mater. Lett. 64, 170–172 (2010)

    Article  Google Scholar 

  3. B. Jaffe, W.R. Cook, H. Jaff, Piezoelectric Ceramics. vol. 3 (Academic Press, New York, 1971), pp. 53–56

    Google Scholar 

  4. X. Wang, M. Gu, B. Yang, S. Zhu, W. Cao, Microelectron. Eng. 66, 855–859 (2003)

    Article  Google Scholar 

  5. H. Moriwake, C.A.J. Fisher, A. Kuwabara, Jpn. J. Appl. Phys. 49, 09MC01 (2010)

    Article  Google Scholar 

  6. O. Parkash, D. Kumar, R.K. Dwivedi, K.K. Srivastava, P. Singh, S. Singh, J. Mater. Sci. 42, 5490–5496 (2007)

    Article  Google Scholar 

  7. Z.J. Shen, W.P. Chen, J.Q. Qi, Y. Wang, H.L.W. Chan, Y. Chen, X.P. Jiang, Phys. B 404, 2374–2376 (2009)

    Article  Google Scholar 

  8. P.-H. Xiang, H. Takeda, T. Shiosaki, Jpn. J. Appl. Phys. 46, 6995 (2007)

    Article  Google Scholar 

  9. P.-H. Xiang, H. Takeda, T. Shiosaki, J. Appl. Phys. 103, 064102 (2008)

    Article  Google Scholar 

  10. R. Farhi, M. ElMarssi, A. Simon, J. Ravez, Eur. Phys. J. 18, 605–610 (2000)

    Article  Google Scholar 

  11. Z.-C. Li, H. Zhang, X. Zou, B. Bergman, Mater. Sci. Eng. B 116, 34–39 (2005)

    Article  Google Scholar 

  12. J. Qi, L. Li, Y. Wang, Y. Fan, Z. Gui, Mater. Chem. Phys. 82, 423–427 (2003)

    Article  Google Scholar 

  13. Haifeng, Yinyin Lin, Ting-Ao-Tang, Solid State Communications 135, 304 (2005)

  14. F.D. Morrison, D.C. Sinclair, J.M.S. Skakle, A.R. West, J. Am. Ceram. Soc. 81, 1957–1960 (1998)

    Article  Google Scholar 

  15. J. Qi, Z. Gui, Y. Wang, Q. Li, T. Li, L. Li, J. Mater. Sci. Lett. 21, 405–406 (2002)

    Article  Google Scholar 

  16. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997 (2000)

    Article  Google Scholar 

  17. N.K. Karan, J.J. Saavedra-Arias, M. Perez, R. Thomas, R.S. Katiyar, Appl. Phys. Lett. 92, 012903 (2008)

    Article  Google Scholar 

  18. D. Wu, B. Fang, Q. Du, J. Ding, Ferroelectrics 432, 81–91 (2012)

    Article  Google Scholar 

  19. R.A. Eichel, J. Electroceram. 19, 9 (2007)

    Article  Google Scholar 

  20. S.J. Park, H.Y. Park, K.H. Cho, S. Nahm, H.G. Lee, D.H. Kim, B.H. Choi, Mater. Res. Bull. 43, 3580 (2008)

    Article  Google Scholar 

  21. V. Paunovic, L. Zivkovic, L. Vracar, V. Mitic, M. Miljkovic, Serbian J. Electr. Eng. 1(3), 89–98 (2004)

    Article  Google Scholar 

  22. X. Ning, P. Yong Ping, W. Zhuo, J. Am. Ceram. Soc. 95, 999–1003 (2012)

    Google Scholar 

  23. G. Chen, J. Wei, X. Peng, F. Chunlin, W. Cai, Mater. Sci. Forum 787, 236–241 (2014)

    Article  Google Scholar 

  24. S.M. Bobade, D.D. Gulwade, A.R. Kulkarni, P. Gopalan, J. Appl. Phys. 97, 074105 (2005)

    Article  Google Scholar 

  25. A.A. Sattar, S.A. Rahman, Phys Status Solidi A 200, 415–422 (2003)

    Article  Google Scholar 

  26. N. Adhlakha, K.L. Yadav, Smart Mater. Struct. 21, 15021 (2012)

    Article  Google Scholar 

  27. Y. Park, W.J. Lee, H.G. Kim, J. Phys. Condens. Matter 43, 9445–9456 (1997)

    Article  Google Scholar 

  28. V.A. Isupov, Phys. Solid State 45, 1107–1111 (2003)

    Article  Google Scholar 

  29. C. Kajtoch, Mater. Sci. Eng. 64, 25–28 (1999)

    Article  Google Scholar 

  30. G.H. Kwei, A.C. Lawson, S.J.L. Billinge, S.W. Cheong, J. Phys. Chem. 97, 2368–2377 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. James Raju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkathy, M.S., Bokinala, K.K. & James Raju, K.C. Effect of Li and Bi co-substituted on structural and physical properties of BaTiO3 ceramics. J Mater Sci: Mater Electron 27, 3175–3181 (2016). https://doi.org/10.1007/s10854-015-4142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4142-5

Keywords

Navigation