Skip to main content
Log in

Thermal blooming and photoluminescence characterizations of sol–gel CdO–SiO2 with different nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CdO NPs was synthesized using the sol–gel method and the nanoparticles were characterized using an UV–Vis spectrophotometer, with shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg’s law and confirmed the crystalline nature of CdO nanoparticles. From the XRD, the average size of CdO NPs was found to be around 41 nm. The photoluminescence spectra of the CdO NPs, as recorded at room temperature, were excited at 300 nm wavelength. The broad emission peaks were between 600 and 650 nm (orange emission). The optical limiting performance of the nanocomposite was described in the sol–gel state. Also, this study has observed and studied the diffraction rings generated in CdO NPs using the same CW laser. The number of rings increases almost exponentially with an increasing volume fraction of SiO2 in the nanocomposites. The refractive index change, Δn, and effective nonlinear refractive index, n 2, were found to be 10−4 and 10−8 cm2/W, respectively. The effective nonlinear refractive index, n 2, was determined based on the observed number of rings. The threshold values of the CdO, CdO–2SiO2 and CdO–5SiO2 nanocomposites are 7.1, 6.55 and 6.34 mW, respectively. This large nonlinearity is attributed to the thermal effect. The present studies suggest that the nanocomposite is a potential candidate for optical device applications such as the optical limiters. The thermal blooming technique was applied to evaluate the thermo-optic coefficient and thermal diffusivity of the CdO NPs. In the thermal blooming experimental setup a transistor–transistor logic modulated CW laser of wavelength 532 nm was used as the excitation source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Oberdorster, E. Oberdorster, J. Oberdorster, Nanotoxicol. Environ. Health Perspect. 113, 823 (2005)

    Article  Google Scholar 

  2. R. Srinivasaraghavan, R. Chandiramouli, B.G. Jeyaprakash, S. Seshadri, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 102, 242 (2013)

    Article  Google Scholar 

  3. N. Singh, S. Charan, K.R. Patil, A.K. Viswanath, P.K. Khanna, Mater. Lett. 60, 3492 (2006)

    Article  Google Scholar 

  4. F. Yakuphanoglu, M. Caglar, Y. Caglar, S. Ilican, J. Alloys Compd. 506, 188 (2010)

    Article  Google Scholar 

  5. J. Chang, V.V. Todkar, R.S. Mane, D. Ham, T. Ganesh, S.H. Han, Phys. E 41, 1741 (2009)

    Article  Google Scholar 

  6. F.Z. Henari, A.A. Dakhel, Laser Phys. 18, 1557 (2008)

    Article  Google Scholar 

  7. R.R. Salunkhe, D.S. Dhawale, T.P. Gujar, C.D. Lokhande, Mater. Res. Bull. 44, 364 (2009)

    Article  Google Scholar 

  8. R.R. Salunkhe, D.S. Dhawale, D.P. Dubal, C.D. Lokhande, Sens. Actuators B140, 86 (2009)

    Article  Google Scholar 

  9. H.B. Lu, L. Liao, H. Li, Y. Tian, D.F. Wang, J.C. Li, Q. Fu, B.P. Zhu, Y. Wu, Mater. Lett. 62, 3928 (2008)

    Article  Google Scholar 

  10. T.J. Kuo, M.H. Huang, J. Phys. Chem. B 110, 13717 (2006)

    Article  Google Scholar 

  11. W. Dong, C. Zhu, Opt. Mater. 22, 227 (2003)

    Article  Google Scholar 

  12. A. Gulino, G. Compagnini, A.A. Scalisi, Chem. Mater. 15, 3332 (2003)

    Article  Google Scholar 

  13. R.R. Salunkhe, D.S. Dhawale, U.M. Patil, C.D. Lokhande, Sens. Actuators B136, 39 (2009)

    Article  Google Scholar 

  14. X. Liu, C. Li, S. Han, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1950 (2003)

    Article  Google Scholar 

  15. B.G. Jeyaprakash, K. Kesavan, R. Ashok kumar, S. Mohan, A. Amala rani, Bull. Mater. Sci. 34, 601 (2011)

    Article  Google Scholar 

  16. Q. Zhou, Z. Guo Ji, B. Bin Hu, C. Chen, L. Zhao, C. Wang, Mater. Lett. 61, 531 (2007)

    Article  Google Scholar 

  17. Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203 (2002)

    Article  Google Scholar 

  18. L.M. Su, N. Grote, F. Schmitt, Electron. Lett. 20, 716 (1984)

    Article  Google Scholar 

  19. O. Gomez Daza, A. Arias-Carbajal Readigos, J. Campos, M.T.S. Nair, P.K. Nair, Mod. Phys. Lett. B 17, 609 (2001)

    Article  Google Scholar 

  20. R. Das, S. Ray, J. Phys. D Appl. Phys. 36, 152 (2003)

    Article  Google Scholar 

  21. Y. Zhang, G. Du, X. Yang, B. Zhao, Y. Ma, T. Yang, H.C. Ong, D. Liu, S. Yang, Semicond. Sci. Technol. 19, 755 (2004)

    Article  Google Scholar 

  22. D.S. Dhawale, A.M. More, S.S. Latthe, K.Y. Rajpure, C.D. Lokhande, Appl. Surf. Sci. 254, 3269 (2008)

    Article  Google Scholar 

  23. T.P. Gujar, V.R. Shinde, W.Y. Kim, K.D. Jung, C.D. Lokhande, O.S. Joo, Appl. Surf. Sci. 254, 3813 (2008)

    Article  Google Scholar 

  24. K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, K. Sekar, C.P.G. Vallabhan, Semicond. Sci. Technol. 9, 1827 (1994)

    Article  Google Scholar 

  25. M. Kul, A.S. Aybek, E. Turan, M. Zor, S. Irmak, Sol. Energy Mater Sol. Cell 91, 1927 (2007)

    Article  Google Scholar 

  26. P.K. Ghosh, S. Das, S. Kundoo, K.K. Chattopadhyay, J. Sol Gel. Sci. Technol. 34, 173 (2005)

    Article  Google Scholar 

  27. T.K. Subramanyam, B.S. Naidu, S. Uthanna, Appl. Surf. Sci. 169–170, 529 (2001)

    Article  Google Scholar 

  28. D. Ma, Z. Ye, L. Wang, J. Huang, B. Zhao, Mater. Lett. 58, 128 (2003)

    Article  Google Scholar 

  29. N. Ueda, H. Maeda, H. Hosono, H. Kawazoe, J. Appl. Phys. 84, 6174 (1998)

    Article  Google Scholar 

  30. A.J. Varkey, A.F. Fort, Thin Solid Films 239, 211 (1994)

    Article  Google Scholar 

  31. C.H. Bhosale, A.V. Kambale, A.V. Kokate, K.Y. Rajpure, Mater. Sci. Eng. B 122, 67 (2005)

    Article  Google Scholar 

  32. K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, J. Cryst. Growth 147, 355 (1995)

    Article  Google Scholar 

  33. B. Thangaraju, Thin Solid Films 402, 71 (2002)

    Article  Google Scholar 

  34. K.T.R. Reddy, H. Gopalaswamy, P.J. Reddy, R.W. Miles, J. Cryst. Growth 210, 516 (2000)

    Article  Google Scholar 

  35. F. Atay, I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, J. Mater. Sci. Mater. Electron. 22, 492 (2011)

    Article  Google Scholar 

  36. M.R. Panigrahi, S. Panigrahi, Phys. B 405, 1787 (2010)

    Article  Google Scholar 

  37. JCPDS data (00-005-0640) card

  38. H. Gazy Lazim, K.I. Ajeel, H. Ali Badran, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 145, 598 (2015)

    Article  Google Scholar 

  39. D.L. Moreno, E.D. Rosa Cruz, F.J. Cuevas, L.E. Regalado, P. Salas, R. Rodriguez, V.M. Castano, Opt. Mat. 19, 275 (2002)

    Article  Google Scholar 

  40. H.I. Elim, W. Ji, A.H. Yuwono, J.M. Xue, J. Wang, Appl. Phys. Lett. 82, 2691 (2003)

    Article  Google Scholar 

  41. X.C. Wu, R.Y. Wang, B.S. Zou, L. Wang, S.M. Liu, J.R. Xuand, W. Huang, J. Mater. Res. 13, 604 (1998)

    Article  Google Scholar 

  42. A.Y. Al-Ahmad, Q.M.A. Hassan, H. Ali Badran, K.A. Hussain, Opt. Laser Technol. 44, 1450 (2012)

    Article  Google Scholar 

  43. H. Ali Badran, Q.M. Hassan, A.Y. Al-Ahmad, C.A. Emshary, Can. J. Phys. 89, 1219 (2011)

    Article  Google Scholar 

  44. H.L. Fragnito, S.F. Pereira, A. Kiel, Opt. Lett. 11, 27 (1986)

    Article  Google Scholar 

  45. K. Merritt, A. Gaind, J.M. Anderson, J. Biomed. Matter. Res. 39, 415 (1998)

    Article  Google Scholar 

  46. J.H. Brannon, D. Magde, J. Phys. Chem. 82, 705 (1978)

    Article  Google Scholar 

  47. H. Ali Badran, Appl. Phys. B 119, 319 (2015)

    Article  Google Scholar 

  48. S.A. Joseph, M. Hari, S. Mathew, Opt. Commun. 283, 313 (2010)

    Article  Google Scholar 

  49. E.A. Carvalho, A.P. Carmo, M.J.V. Bell, Thin Solid Films 520, 2667 (2012)

    Article  Google Scholar 

  50. K. Milanchian, H. Tajalli, G.A. Gilani, Opt. Mater. 32, 12 (2009)

    Article  Google Scholar 

  51. A.J. Santhi, H. Misha, S. Mathew, S. Gaurav, V.M. Hadiya Soumya et al., Opt. Commun. 283, 313 (2010)

    Article  Google Scholar 

  52. M. Sikovec, M. Franko, M. Novic, J. Chromatogr. A 920, 119 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain A. Badran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badran, H.A., AL-Aladil, K.A., Lazim, H.G. et al. Thermal blooming and photoluminescence characterizations of sol–gel CdO–SiO2 with different nanocomposite. J Mater Sci: Mater Electron 27, 2212–2220 (2016). https://doi.org/10.1007/s10854-015-4013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4013-0

Keywords

Navigation