Skip to main content
Log in

The controllable growth of GaN nanostructures with various morphologies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The authors successfully fabricated GaN nanostructures with various morphologies by precisely tuning the key parameters of chemical vapor deposition, such as growth time, temperature and reaction gas flow. The nanostructures with manifold morphologies including nanowires, micro/nanocones, nanotowers, tower-like nanowires and stacked-cone nanowires can be selectively fabricated according to different experimental details. Based on the evolution of the nanostructures, the initial growth is based on VLS mechanism, while VS mechanism progressively dominates crystal growth as growth time increases or temperature rises. Ga flow has great impact on the morphology of the nanostructures. Formation processes of the nanostructures are explained by direct impingement and surface diffusion model of the adatoms. These nanostructures have potential applications in the optoelectronic and microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. He, M. Wang, L.J. Guo, Chem. Eng. J. 279, 747 (2015)

    Article  Google Scholar 

  2. S. Azoz, L.M. Gilbertson, S.M. Hashmi, P. Han, G.E. Sterbinsky, S.A. Kanaan, J.B. Zimmerman, L.D. Pfefferle, Carbon 93, 1008 (2015)

    Article  Google Scholar 

  3. A. Echresh, C.O. Chey, M.Z. Shoushtari, V. Khranovskyy, O. Nur, M. Willander, J. Alloys Compd. 632, 165 (2015)

    Article  Google Scholar 

  4. Y.H. Ok, K.R. Lee, B.O. Jung, Y.H. Kwon, H.K. Cho, Thin Solid Films 570, 282 (2014)

    Article  Google Scholar 

  5. L. Li, S.M. Yang, X.T. Zhang, L.J. Wang, Z.D. Jiang, Q.J. Lin, C.Y. Wang, F. Han, N.C. Peng, Microelectron. Eng. 126, 27 (2014)

    Article  Google Scholar 

  6. R. Azimirad, A. Khayatian, S. Safa, M.A. Kashi, J. Alloys Compd. 615, 227 (2014)

    Article  Google Scholar 

  7. J.H. Choi, J.T. Park, Microelectron. Reliab. 55(9–10), 1438 (2015)

    Article  Google Scholar 

  8. R. Tevisoli, R.T. Doria, M.D. Souza, M.A. Pavanello, Microelectron. Eng. 147, 23 (2015)

    Article  Google Scholar 

  9. L.K. Tan, F.K. Yam, Z. Hassan, Mater. Sci. Semicond. Process. 39, 559 (2015)

    Article  Google Scholar 

  10. S. Valedbagi, Sh Mohammad Elahi, M.R. Abolhassani, A. Fathalian, A. Esfandiar, Opt. Mater. 47, 44 (2015)

    Article  Google Scholar 

  11. Q. Chen, R. Song, C.H. Chen, X.J. Chen, Solid State Commun. 172, 24 (2013)

    Article  Google Scholar 

  12. Y.R. Dai, X.J. Chen, C.H. Jiang, Phys. B 407(3), 515 (2012)

    Article  Google Scholar 

  13. T. Song, W.I. Park, U. Paik, Appl. Phys. Lett. 96, 011105 (2010)

    Article  Google Scholar 

  14. W.C. Hou et al., Nanotechnology 20, 055606 (2009)

    Article  Google Scholar 

  15. V. Purushothaman, V. Ramakrishnan, K. Jeganathan, RSC Adv. 2, 4802 (2012)

    Article  Google Scholar 

  16. W.K. Burton, N. Cabrera, C. Frank, Philos. Trans. R. Soc. Lond. Ser. A 243, 299 (1951)

    Article  Google Scholar 

  17. V. Purushothaman, K. Jeganathan, J. Nanopart. Res. 15, 1789 (2013)

    Article  Google Scholar 

  18. S.H. Park, H.S. Ko, S.H. Kim, C.M. Lee, Ceram. Int. 40, 8305 (2014)

    Article  Google Scholar 

  19. Y.H. Liu, P. Sun, X.Q. Meng, IEEE Photo. Tech. Lett. (2015). doi:10.1109/LPT.2015.2478906

    Google Scholar 

  20. H.W. Huang, C.H. Lin, C.C. Yu, K.Y. Lee, B.D. Lee, H.C. Kuo, S.Y. Kuo, K.M. Leung, S.C. Wang, Mater. Sci. Eng. B 151, 205 (2008)

    Article  Google Scholar 

  21. Y.H. Liu, X.Q. Meng, X. Wan, Z.L. Wang, H.H. Huang, H. Long, Z.C. Song, G.J. Fang, Nanosc. Res. Lett. 9, 607 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11275144 and J1210061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianquan Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Meng, X. The controllable growth of GaN nanostructures with various morphologies. J Mater Sci: Mater Electron 27, 1590–1596 (2016). https://doi.org/10.1007/s10854-015-3928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3928-9

Keywords

Navigation