Skip to main content
Log in

Preparation of Cu-doped colloidal SiO2 abrasives and their chemical mechanical polishing behavior on sapphire substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu-doped colloidal SiO2 composite abrasives were synthesized by seed-induced growth method. Time of flight secondary ion mass spectroscopy and scanning electron microscopy analyses show that element copper has been doped into colloidal SiO2, and the prepared Cu-doped colloidal SiO2 composite abrasives are all ideal spherical and have good dispersibility. Chemical mechanical polishing (CMP) performances of Cu-doped colloidal SiO2 composite abrasives on sapphire substrates were investigated using UNIPOL-1502 CMP equipment. Experimental results show that, the surface of sapphire polished by Cu-doped colloidal SiO2 composite abrasive exhibit lower surface roughness (Ra) and higher material removal rate (MRR) than that of pure colloidal SiO2 abrasive under the same testing conditions. Furthermore, the acting mechanism of Cu-doped colloidal SiO2 composite abrasive in sapphire CMP was analyzed by X-ray photoelectron spectroscopy, and analytical results show that element Cu in composite abrasives can react with sapphire substrates to form dialuminium copper tetraoxide (Al2CuO4) during CMP, which promotes the chemical effect in CMP and leads to the improvement of MRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.L. Zhu, L.A. Tessaroto, R. Sabia, V.A. Greenhut, M. Smith, D.E. Niesz, Appl. Surf. Sci. 236, 120–130 (2004)

    Article  Google Scholar 

  2. T. Saitow, T. Hirayama, T. Yamamoto, Y. Ikuhara, J. Am. Ceram. Soc. 88(8), 2277–2285 (2005)

    Article  Google Scholar 

  3. X.H. Niu, Y.L. Liu, B.M. Tan, L.Y. Han, J.X. Zhang, Trans. Nonferrous Metals Soc. 16, 732–734 (2006)

    Article  Google Scholar 

  4. T. Takeuchi, H. Takeuchi, S. Sota, S. Sakai, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 36(2B), L177–L179 (1997)

    Article  Google Scholar 

  5. W.X. Yan, Z.F. Zhang, X.H. Guo, W.L. Liu, Z.T. Song, ECS J. Solid State Sci. 4(3), P108–P111 (2015)

    Article  Google Scholar 

  6. Z.G. Zhuo, H. Zhou, X.M. Xu, Y. Zang, Mach. Des. Manuf. 4, 249–251 (2013)

    Google Scholar 

  7. T. Hara, S. Balakumar, Thin Solid Films 462–463, 186–191 (2004)

    Article  Google Scholar 

  8. H. Lei, J.P. Luo, Wear 257, 461–470 (2004)

    Article  Google Scholar 

  9. M. Forsberg, Microelectron. Eng. 77, 319–326 (2005)

    Article  Google Scholar 

  10. Z.F. Zhang, L. Hou, W.X. Yan, W.L. Liu, Z.T. Zhang, Lubr. Eng. 38, 88–91 (2013)

    Google Scholar 

  11. V.V. Rogov, N.D. Rublev, T.L. Krotenko, A.V. Troyan, J. Superhard Mater. 30(4), 273–275 (2008)

    Article  Google Scholar 

  12. P.B. Zantye, A. Kumar, A.K. Sikder, Mater. Sci. Eng. R 45(3–6), 80–220 (2004)

    Google Scholar 

  13. H.L. Zhu, L.A. Tessaroto, R. Sabia, V.A. Greenhut, M. Smith, D.E. Niesz, Appl. Surf. Sci. 236, 120–130 (2004)

    Article  Google Scholar 

  14. Z.F. Zhang, W.X. Yan, L. Zhang, W.L. Liu, Z.T. Song, Microelectron. Eng. 88, 3020–3023 (2011)

    Article  Google Scholar 

  15. S.J. Zhou, S. Liu, Appl. Surf. Sci. 255, 9469–9473 (2009)

    Article  Google Scholar 

  16. L.S. Bai, W. Xiong, X.F. Chu, Y.P. Dong, W.B. Zhang, Opt. Precis. Eng. 22(5), 1289–1295 (2014)

    Article  Google Scholar 

  17. H.L. Zhu, D.E. Niesz, V.A. Greenhut, J. Mater. Res. 20(02), 504–520 (2005)

    Article  Google Scholar 

  18. W. Xiong, X.F. Chu, Y.P. Dong, L. Bi, M.H. Ye, W.Q. Sun, J. Synth. Cryst. 42, 1064–1106 (2013)

    Google Scholar 

  19. X.K. Hu, Z.T. Song, Z.C. Pan, W.L. Liu, L.C. Wu, Appl. Surf. Sci. 255, 8230–8234 (2009)

    Article  Google Scholar 

  20. Z.F. Zhang, W.L. Liu, Z.T. Song, X.K. Hu, J. Electrochem. Soc. 157(6), H688–H691 (2010)

    Article  Google Scholar 

  21. Y.H. Zhao, B.M. Tan, X.H. Niu, J.L. Zhen, Q. Guo, Micronanoelectron. Technol. 51, 120–125 (2014)

    Google Scholar 

  22. X.H. Niu, T. Wu, X.H. Zhao, B.M. Tan, Y.L. Liu, Electrochem. Soc. Trans. 18(1), 435–440 (2009)

    Google Scholar 

  23. S. Armini, C.M. Whelan, M. Moinpour, K. Maex, ECS J. Electrochem. Soc. 155(6), H401–H406 (2008)

    Article  Google Scholar 

  24. S. Armini, C.M. Whelan, M. Moinpour, K. Maex, Electrochem. Solid State 10(9), H243–H247 (2007)

    Article  Google Scholar 

  25. H. Li, H. Lei, R.L. Chen, Thin Solid Films 520, 6174–6178 (2012)

    Article  Google Scholar 

  26. H. Lei, P.Z. Zhang, Appl. Surf. Sci. 253, 8754–8761 (2007)

    Article  Google Scholar 

  27. H. Lei, F.L. Chu, B.Q. Xiao, X.F. Tu, H. Xu, H.N. Qiu, Microelectron. Eng. 87, 1747–1750 (2010)

    Article  Google Scholar 

  28. S.H. Lee, Z.Y. Lu, S.V. Babu, E. Matijevic, J. Mater. Res. 17(10), 2744–2749 (2002)

    Article  Google Scholar 

  29. L. Zhang, H.B. Wang, Z.F. Zhang, F. Qin, W.L. Liu, Z.T. Song, Appl. Surf. Sci. 258, 1217–1224 (2011)

    Article  Google Scholar 

  30. C.D. Wagner, D.E. Passoja, H.F. Hillery, T.G. Kinisky, H.A. Six, W.T. Jansen, J.A. Taylor, J. Vac. Sci. Technol. 21(4), 933–944 (1982)

    Article  Google Scholar 

  31. J.R. Lindsay, H.J. Rose, W.E. Scoartz, P.H. Watts, K.A. Rayburn, Appl. Spectrosc. 27, 1–5 (1973)

    Article  Google Scholar 

  32. G. Deroubaix, P. Marcus, Surf. Interface Anal. 18(1), 39–46 (1992)

    Article  Google Scholar 

  33. P.R. Anderson, W.E. Swartz, Inorg. Chem. 13(9), 2293–2294 (1974)

    Article  Google Scholar 

  34. B.R. Strohmeier, D.E. Leyden, R.S. Field, D.M. Hercules, J. Catal. 94(2), 514–530 (1985)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Grant Nos. 51475279, 51375291). Research Fund for Doctoral Program of Higher Education of China (Grant No. 20123108110016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Gu, Q. Preparation of Cu-doped colloidal SiO2 abrasives and their chemical mechanical polishing behavior on sapphire substrates. J Mater Sci: Mater Electron 26, 10194–10200 (2015). https://doi.org/10.1007/s10854-015-3708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3708-6

Keywords

Navigation