Skip to main content
Log in

Electronic transport in molybdenum dioxide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Molybdenum dioxide (MoO2) is a mixed ionic electronic conductor with potential applications in energy storage and conversion. There is some ambiguity about the nature of the electronic conduction mechanism and its temperature dependence. Conductivity data as a function of temperature were obtained and explained within the framework of the band structure to support the description of MoO2 as a semi-metal. AC Hall effect measurements found low electron mobilities as expected for d band conduction. Collectively the data supported a combined conduction model including residual conductivity, low temperature hopping and impurity band conduction from Mo 4d bands degenerate with the conduction band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Gulino, S. Parker, F.H. Jones, R.G. Egdell, J. Chem. Soc. Faraday Trans. 92, 2137 (1996)

    Article  Google Scholar 

  2. C.B. Carter, M.G. Norton, Ceramic Materials: Science and Engineering, 2nd edn. (Springer, New York, 2013), pp. 550–552

    Book  Google Scholar 

  3. C.A. Ellefson, O. Marin-Flores, S. Ha, M.G. Norton, J. Mater. Sci. 47, 2057 (2012)

    Article  Google Scholar 

  4. Q. Yang, Q. Liang, J. Liu, S. Liang, S. Tang, P. Lu et al., Mater. Lett. 127, 32 (2014)

    Article  Google Scholar 

  5. B.W. Kwon, C.A. Ellefson, J. Breit, J. Kim, M.G. Norton, S. Ha, J. Power Sources 243, 203 (2013)

    Article  Google Scholar 

  6. X. Hou, O. Marin-Flores, B.W. Kwon, J. Kim, M.G. Norton, S. Ha, J. Power Sources 268, 546 (2014)

    Article  Google Scholar 

  7. P. Han, W. Ma, S. Pang, Q. Kong, J. Yao, C. Bi et al., J. Mater. Chem. A 1, 5949 (2013)

    Article  Google Scholar 

  8. O. Marin-Flores, T. Turba, C.A. Ellefson, L. Scudiero, J. Breit, M.G. Norton et al., J. Nanoelectron. Opt. 5, 110 (2010)

    Article  Google Scholar 

  9. D.B. Rogers, R.D. Shannon, A.W. Sleight, J.L. Gillson, Inorg. Chem. 8, 841 (1969)

    Article  Google Scholar 

  10. Y.F. Shi, B.K. Guo, S.A. Corr, Q.H. Shi, Y.S. Hu, K.R. Heier et al., Nano Lett. 9, 4215 (2009)

    Article  Google Scholar 

  11. M.S. Oh, B.S. Yang, J.H. Lee, S.H. Oh, U.S. Lee, Y.J. Kim et al., J. Vac. Sci. Technol. A 30, 031501-1 (2012)

    Google Scholar 

  12. M.A. Khilla, Z.M. Hanafi, B.S. Farag, A. Abuelsaud, Thermochim. Acta 54, 35 (1982)

    Article  Google Scholar 

  13. G.B. Smith, D. Golestan, A.R. Gentle, Appl. Phys. Lett. 103, 051119-1 (2013)

    Google Scholar 

  14. X.Y. Chen, Z.J. Zhang, X.X. Li, C.W. Shi, X.L. Li, Chem. Phys. Lett. 418, 105 (2006)

    Article  Google Scholar 

  15. V. Eyert, R. Horny, K.H. Hock, S. Horn, J. Phys. Condens. Matter 12, 4923 (2000)

    Article  Google Scholar 

  16. D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, J. Phys. Chem. C 114, 4636 (2010)

    Article  Google Scholar 

  17. R. Hoffman, Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures (VCH Publishers Inc, New York, 1988)

    Google Scholar 

  18. A. Walsh, A.B. Kehoe, D.J. Temple, G.W. Watson, D.O. Scanlon, Chem. Commun. 49, 448 (2013)

    Article  Google Scholar 

  19. M.D. McCluskey, E.E. Haller, Dopants and Defects in Semiconductors (CRC Press, Boca Raton, 2012), pp. 125–129

    Google Scholar 

  20. A.J.E. Rettie, H.C. Lee, L.G. Marshall, J.F. Lin, C. Capan, J. Lindemuth et al., J. Am. Chem. Soc. 135, 11389 (2013)

    Article  Google Scholar 

  21. A.L. Efros, B.I. Shklovskii, J. Phys. C Solid State 8, L49 (1975)

    Article  Google Scholar 

  22. A.R. Bally, E.N. Korobeinikova, P.E. Schmid, F. Levy, F. Bussy, J. Phys. D Appl. Phys. 31, 1149 (1998)

    Article  Google Scholar 

  23. J. Hubbard, Proc. R. Soc. Lond. Ser. A 281, 401 (1964)

    Article  Google Scholar 

  24. O. Marin-Flores, L. Scudiero, S. Ha, Surf. Sci. 603, 2327 (2009)

    Article  Google Scholar 

  25. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by the Office of Naval Research (N00014-12-1-0830) and the Department of Energy (DE-FG02-07ER46386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grant Norton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, K.W., Corolewski, C.D., McCluskey, M.D. et al. Electronic transport in molybdenum dioxide thin films. J Mater Sci: Mater Electron 26, 9717–9720 (2015). https://doi.org/10.1007/s10854-015-3639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3639-2

Keywords

Navigation