Skip to main content
Log in

High performance resistive switching memory organic films prepared through PPy growing on graphene oxide substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the photochemical polymerization using graphene oxide (GO) as initiator generates a new composite film with polypyrrole (PPy) covering the GO nanosheets. The specular reflection infrared spectroscopy reveals the continuous upload of the conjugated polymers. Structures of the as-synthesized films are studied by using Raman and X-ray photoelectron spectroscopy with the aim of gaining an insight into the interface. The electronic properties of the composite films are investigated using solid-phase ultraviolet photoelectron spectroscopy. Fabricated from the synthesized film, the ITO/GO–PPy/Al device exhibits a nonvolatile rewritable memory with a reversible bistable resistance switching and the turn on voltage of 1.7 V. The ON/OFF current ratio reaches 105. Analyzing the current–voltage characteristics indicates that the ON-state charge transport follows Ohmic conduction, and the OFF-state charge transport is dominated by trap-limited space charge limited conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.C. Lai, D.Y. Wang, I.S. Huang, Y.T. Chen, Y.H. Hsu, T.Y. Lin, H.F. Meng, T.C. Chang, Y.J. Yang, C.C. Chen, F.C. Hsu, Y.F. Chen, J. Mater. Chem. C. 1, 552–559 (2013)

    Article  Google Scholar 

  2. B. Sun, W. Zhao, Y. Liu, P. Chen, J. Mater. Sci. Mater. Electron. 25, 4306–4311 (2014)

    Article  Google Scholar 

  3. K.C. Aw, P.C. Ooi, K.A. Bazak, W. Gao, J. Mater. Sci. Mater. Electron. 24, 3116–3125 (2013)

    Article  Google Scholar 

  4. J.A. Ávila-NiñO, W.S. Machado, A.O. Sustaita, E. Segura-Cardenas, M. Reyes-Reyes, R. López-Sandoval, I.A. Hümmelgen, Org. Electron. 13, 2582–2588 (2012)

    Article  Google Scholar 

  5. Q.D. Ling, S.L. Lim, Y. Song, C.X. Zhu, D.S.H. Chan, E.T. Kang, K.G. Neoh, Langmuir 23, 312–319 (2007)

    Article  Google Scholar 

  6. Q. Zhang, J. Pan, X. Yi, L. Li, S. Shang, Org. Electron. 13, 1289–1295 (2012)

    Article  Google Scholar 

  7. X. Zhuang, Y. Chen, L. Wang, K.G. Neoh, E.T. Kang, C. Wang, Polym. Chem. 5, 2010–2017 (2014)

    Article  Google Scholar 

  8. C. Petit, M. Seredych, T.J.J. Bandosz, Mater. Chem. 19, 9176–9185 (2009)

    Article  Google Scholar 

  9. L.Q. Xu, B. Zhang, Y. Chen, K.G. Neoh, E.T. Kang, G.D. Fu, Macromol. Rapid Commun. 34, 234–238 (2013)

    Article  Google Scholar 

  10. L. Zhang, Y. Li, J. Shi, G. Shi, S. Cao, Mater. Chem. Phys. 142, 626–632 (2013)

    Article  Google Scholar 

  11. G.L. Li, G. Liu, M. Li, D. Wan, K.G. Neoh, E.T. Kang, J. Phys. Chem. C 114, 12742–12748 (2010)

    Article  Google Scholar 

  12. D.B. Velusamy, S.K. Hwang, R.H. Kim, G. Song, S.H. Cho, I. Bae, C. Park, J. Mater. Chem. 22, 25183–25189 (2012)

    Article  Google Scholar 

  13. G. Liu, X. Zhuang, Y. Chen, B. Zhang, J. Zhu, C.X. Zhu, K.G. Neoh, E.T. Kang, Appl. Phys. Lett. 95(253301), 1–3 (2009)

    Google Scholar 

  14. B. Zhang, Y. Chen, L. Xu, L. Zeng, Y. He, E.T. Kang, J. Zhang, J. Polym. Sci. Pol. Chem. 49, 2043–2050 (2011)

    Article  Google Scholar 

  15. X.D. Zhuang, Y. Chen, G. Liu, P.P. Li, C.X. Zhu, E.T. Kang, K.G. Neoh, B. Zhang, J.H. Zhu, Y.X. Li, Adv. Mater. 22, 1731–1735 (2010)

    Article  Google Scholar 

  16. B. Zhang, Y.L. Liu, Y. Chen, K.G. Neoh, Y.X. Li, C.X. Zhu, E.S. Tok, E.T. Kang, Chem. Eur. J. 17, 10304–10311 (2011)

    Article  Google Scholar 

  17. P.B. Landon, J. Gutierrez, C.L. Gilleland, L. Jordan, J.P. Ferraris, R. Glosser, J. Mater. Sci. Mater. Electron. 18, S235–S238 (2007)

    Article  Google Scholar 

  18. H.N. Tien, S.H. Hur, Phys. Status Solidi Rapid Res. Lett. 6, 379–381 (2012)

    Article  Google Scholar 

  19. H.D. Pham, V.H. Pham, E.S. Oh, J.S. Chung, S. Kim, Korean J. Chem. Eng. 29, 125–129 (2012)

    Article  Google Scholar 

  20. F. Gong, X. Xu, G. Zhou, Z.S. Wang, Phys. Chem. Chem. Phys. 15, 546–552 (2013)

    Article  Google Scholar 

  21. J. Foroughi, G.M. Spinks, G.G. Wallace, J. Mater. Chem. 21, 6421–6426 (2011)

    Article  Google Scholar 

  22. F. Li, X. Ni, Sol. Energy Mater. Sol. Cells 118, 109–115 (2013)

    Article  Google Scholar 

  23. Z. Yang, X. Ni, Langmuir 28, 4829–4834 (2012)

    Article  Google Scholar 

  24. G. Li, X. Ni, Mater. Lett. 62, 3066–3069 (2008)

    Article  Google Scholar 

  25. X. Ma, X. Ni, Langmuir 30, 2241–2248 (2014)

    Article  Google Scholar 

  26. Z. Weng, X. Ni, D. Yang, J. Wang, W. Chen, J. Photochem. Photobiol. A Chem. 201, 151–156 (2009)

    Article  Google Scholar 

  27. H. Chang, Z. Sun, M. Saito, Q. Yuan, H. Zhang, J. Li, Z. Wang, T. Fujita, F. Ding, Z. Zheng, F. Yan, H. Wu, M. Chen, Y. Ikuhara, ACS Nano 7, 6310–6320 (2013)

    Article  Google Scholar 

  28. T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Adv. Funct. Mater. 20, 2255–2262 (2010)

    Article  Google Scholar 

  29. H.C. Hsu, I. Shown, H.Y. Wei, Y.C. Chang, H.Y. Du, Y.G. Lin, C.A. Tseng, C.H. Wang, L.C. Chen, Y.C. Lin, K.H. Chen, Nanoscale 5, 262–268 (2013)

    Article  Google Scholar 

  30. L. Ai, J. Jiang, J. Mater. Sci. Mater. Electron. 21, 410–415 (2010)

    Article  Google Scholar 

  31. Z. Guo, S. Wang, G. Wang, Z. Niu, J. Yang, W. Wu, Carbon 76, 203–211 (2014)

    Article  Google Scholar 

  32. Z. Weng, X. Ni, J. Appl. Polym. Sci. 110, 109–116 (2008)

    Article  Google Scholar 

  33. P. Bätz, D. Schmeisser, W. Göpel, Phys. Rev. B. 43, 9178–9189 (1991)

    Article  Google Scholar 

  34. D.J. Yun, S.W. Rhee, A.C.S. Appl, Mater. Interfaces 4, 982–989 (2012)

    Article  Google Scholar 

  35. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Langmuir 29, 3097–3105 (2013)

    Article  Google Scholar 

  36. W. Xu, T.S. Lim, H.K. Seo, S.Y. Min, H. Cho, M.H. Park, Y.H. Kim, T.W. Lee, Small 10, 1999–2005 (2014)

    Article  Google Scholar 

  37. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Carbon 37, 1379–1389 (1999)

    Article  Google Scholar 

  38. R. Hu, D. Shao, X. Wang, Polym. Chem. 5, 6207–6215 (2014)

    Article  Google Scholar 

  39. J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, Biomaterials 30, 4325–4335 (2009)

    Article  Google Scholar 

  40. J. Wang, X. Ni, Solid State Commun. 146, 239–244 (2008)

    Article  Google Scholar 

  41. G. Khurana, P. Misra, R.S. Katiyar, Carbon 76, 341–347 (2014)

    Article  Google Scholar 

  42. H.X. He, X.L. Li, N.J. Tao, Phys. Rev. B. 68(045302), 1–6 (2003)

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Science and Technology Commission of Shanghai Municipality (STCSM) under Grant No. 13DZ1108904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyuan Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ni, X. & Ding, S. High performance resistive switching memory organic films prepared through PPy growing on graphene oxide substrate. J Mater Sci: Mater Electron 26, 9001–9009 (2015). https://doi.org/10.1007/s10854-015-3583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3583-1

Keywords

Navigation