Skip to main content
Log in

Effect of Er doping on microstructure and optical properties of ZnO thin films prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Er doped ZnO (EZO) thin films were successfully prepared by sol–gel spin coating method on quartz glass substrates. The effect of Er doping content on the microstructure and optical properties of EZO thin films were investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that Er was successfully incorporated into the EZO thin films and substituted the Zn sites. The incorporation of Er could affect the band gap (E g ) and optical constants of ZnO thin films. The photoluminescence spectra show that the 1.54 μm emission, which originates from the transition of Er3+: 4I13/2 → 4I15/2, was observed in EZO thin films. Furthermore, it is demonstrated that the formation of singly ionized oxygen vacancies (V O·) could be inhibited by the incorporation of Er dopant, which is supported by further defect formation energies calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  2. B.Y. Oh, M.C. Jeong, T.H. Moon, W. Lee, J.M. Myoung, J.Y. Hwang, D.S. Seo, Transparent conductive Al-doped ZnO films for liquid crystal displays. J. Appl. Phys. 99, 124505 (2006)

    Article  Google Scholar 

  3. P.K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes. J. Phys. D Appl. Phys. 42, 035102 (2009)

    Article  Google Scholar 

  4. P. Wang, N.F. Chen, Z.G. Yin, P-doped p-type ZnO films deposited on Si substrate by radio-frequency magnetron sputtering. Appl. Phys. Lett. 88, 152102 (2006)

    Article  Google Scholar 

  5. J.G. Lu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, L.P. Zhu, P-type conduction in N–Al co-doped ZnO thin films. Appl. Phys. Lett. 85, 3134 (2004)

    Article  Google Scholar 

  6. X.Y. Zeng, J.L. Yuan, L.D. Zhang, Synthesis and photoluminescent properties of rare earth doped ZnO hierarchical microspheres. J. Phys. Chem. C 112, 3503–3508 (2008)

    Article  Google Scholar 

  7. J. Heikenfeld, M. Garter, D.S. Lee, R. Birkhahn, A.J. Steckl, Red light emission by photoluminescence and electroluminescence from Eu-doped GaN. Appl. Phys. Lett. 7, 1189 (1999)

    Article  Google Scholar 

  8. K. Uwai, H. Nakagome, K. Takahei, Yb doped InP grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 50, 977 (1987)

    Article  Google Scholar 

  9. A.K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, C.E. Bonner, Pulsed-laser deposited Er:ZnO films for 1.54 μm emission. Appl. Phys. Lett. 90, 072108 (2007)

    Article  Google Scholar 

  10. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, Y. Takeda, Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission. Appl. Phys. Lett. 87, 091109 (2005)

    Article  Google Scholar 

  11. F. Oba, A. Togo, I. Tanaka, Defect energetics in ZnO: a hybrid Hartree–Fock density functional study. Phys. Rev. B 77, 245202 (2008)

    Article  Google Scholar 

  12. L.L. Yang, Q.X. Zhao, M. Willander, J.H. Yang, I. Ivanov, Annealing effects on optical properties of low temperature grown ZnO nanorod arrays. J. Appl. Phys. 105, 053503 (2009)

    Article  Google Scholar 

  13. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943 (2001)

    Article  Google Scholar 

  14. P. Zhan, W.P. Wang, C. Liu, Y. Hu, Z.C. Li, Z.J. Zhang, B.Y. Wang, X.Z. Cao, Oxygen vacancy-induced ferromagnetism in undoped ZnO thin films. J. Appl. Phys. 111, 033501 (2012)

    Article  Google Scholar 

  15. J.Z. Kong, F. Zhou, Z. Wang, C.B. Wang, M.L. Wang, K.M. Chen, X.M. Wu, K.J. Zhu, J.H. Qiu, Preparation and optical properties of high-quality oriented of Al and Er co-doped ZnO thin films. J. Sol-Gel. Sci. Technol. 63, 95–102 (2012)

    Article  Google Scholar 

  16. Z.D. Pan, A. Ueda, H.Y. Xu, S.K. Hark, S.H. Morgan, R. Mu, Photoluminescence of Er-doped ZnO nanoparticle films via direct and indirect excitation. J. Nanophotonics 6, 063508-1–063508-11 (2012)

    Article  Google Scholar 

  17. S. Jiang, Z.H. Ren, S.Y. Gong, S.M. Yin, Y.F. Yu, X. Li, G. Xu, G. Shen, G.R. Han, Tunable photoluminescence properties of well-aligned ZnO nanorod array by oxygen plasma post-treatment. Appl. Surf. Sci. 289, 252–256 (2014)

    Article  Google Scholar 

  18. M.S. Wang, K.E. Lee, S.H. Hahn, E.J. Kim, S. Kim, J.S. Chung, E.W. Shin, C. Park, Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films. Mater. Lett. 61, 1118–1121 (2007)

    Article  Google Scholar 

  19. P. Zhan, Z. Xie, Z.C. Li, W.P. Wang, Z.J. Zhang, Z.X. Li, G.D. Cheng, P. Zhang, B.Y. Wang, X.Z. Cao, Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals. Appl. Phys. Lett. 102, 071914 (2013)

    Article  Google Scholar 

  20. J.B. Lian, Y. Liang, F.L. Kwong, Z.M. Ding, D.H.L. Ng, Template-free solvothermal synthesis of ZnO nanoparticles with controllable size and their size-dependent optical properties. Mater. Lett. 66, 318–320 (2012)

    Article  Google Scholar 

  21. M. Miritello, R. Lo Savio, A.M. Piro, G. Franzò, F. Priolo, F. Iacona, C. Bongiorno, Optical and structural properties of Er2O3 films grown by magnetron sputtering. J. Appl. Phys. 100, 013502 (2006)

    Article  Google Scholar 

  22. J.U. Brehm, M. Winterer, H. Hahn, Synthesis and local structure of doped nanocrystalline zinc oxides. J. Appl. Phys. 100, 064311 (2006)

    Article  Google Scholar 

  23. S. Jannesarahmadi, A. Alemi, Int. J. Bio-Inorg. Hybrid Nanomater 3(4), 215–218 (2014)

    Google Scholar 

  24. J. El Ghoul, M. Kraini, O.M. Lemine, L. El Mir, Sol-gel synthesis, structural, optical and magnetic properties of Co-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 26(4), 2614–2621 (2015)

    Article  Google Scholar 

  25. G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 34–45 (1956)

    Article  Google Scholar 

  26. R.C. Chang, T.C. Li, C.W. Lin, Influence of various thickness metallic interlayers on opto-electric and mechanical properties of AZO thin films on PET substrates. Appl. Surf. Sci. 258, 3732–3737 (2012)

    Article  Google Scholar 

  27. A.A. Dakhel, M. El-Hilo, Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation. J. Appl. Phys. 107, 123905 (2010)

    Article  Google Scholar 

  28. Z.Y. Wang, L.Z. Hu, Effect of oxygen pressure on the structural and optical properties of ZnO thin films on Si (111) by PLD. Vacuum 83, 906–909 (2009)

    Article  Google Scholar 

  29. M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280, 20–25 (1996)

    Article  Google Scholar 

  30. B.J. Coppa, R.F. Davis, R.J. Nemanich, Gold Schottky contacts on oxygen plasma-treated, n-type ZnO (0001). Appl. Phys. Lett. 82, 400 (2003)

    Article  Google Scholar 

  31. A.M. Lord, T.G. Maffeis, M.W. Allen, D. Morgan, P.R. Davies, D.R. Jones, J.E. Evans, N.A. Smith, S.P. Wilks, Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS. Appl. Surf. Sci. 320, 664–669 (2014)

    Article  Google Scholar 

  32. W.J. Li, C.Y. Kong, H.B. Ruan, G.P. Qin, L. Fang, X.D. Meng, H. Zhang, P. Zhang, Q. Xu, Investigation on the formation mechanism of In–N codoped p-type ZnCdO thin films: experiment and theory. J. Phys. Chem. C 118, 22799–22806 (2014)

    Article  Google Scholar 

  33. L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, M. Zhou, Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol-gel method. J. Alloys Compd. 623, 367–373 (2015)

    Article  Google Scholar 

  34. F. Karipcin, E. Kabalcilar, S. Ilican, Y. Caglar, M. Caglar, Synthesized some 4-(2-thiazolylazo) resorcinol complexes: characterization, thermal and optical properties. Spectrochim. Acta A 73, 174–180 (2009)

    Article  Google Scholar 

  35. F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, Y.C. Kim, Transparent conductive ZnO thin films on glass substrates deposited by pulsed laser deposition. J. Cryst. Growth 277, 284–292 (2005)

    Article  Google Scholar 

  36. R.G. Heideman, P.V. Lambeck, J.G.E. Gardeniers, High quality ZnO layers with adjustable refractive indices for integrated optics applications. Opt. Mater. 4, 741–755 (1995)

    Article  Google Scholar 

  37. K.H. Kim, K.C. Park, D.Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J. Appl. Phys. 81, 7764 (1997)

    Article  Google Scholar 

  38. X. Wang, F. Xu, Z.M. Jiang, L.L. Zheng, Zh.Q Ma, R. Xu, B. Yu, M.Zh. Li, F. Lu, Er3+ related 1.53 μm emission from Er–Si-codoped ZnO multilayer film prepared by rf-sputtering. Thin Solid Films 520, 747–751 (2011)

    Article  Google Scholar 

  39. B. Lu, T.T. Zhou, M.J. Ma, C.L. Ye, X.H. Pan, J.G. Lu, Z.Z. Ye, Realization of non c-axis oriented ZnO thin films on quartz through Mn–Li co-doping. Mater. Lett. 108, 153–155 (2013)

    Article  Google Scholar 

  40. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 68, 403 (1996)

    Article  Google Scholar 

  41. Anderson Janotti, Chris G. Van de Walle, Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005)

    Article  Google Scholar 

  42. K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišic, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 110, 20865–20871 (2006)

    Article  Google Scholar 

  43. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996)

    Article  Google Scholar 

  44. H.B. Liu, Y. Liu, L.L. Yang, ZhG Chen, H.L. Liu, W.J. Li, J.H. Yang, ZhP Zhou, Role of oxygen vacancies in V-doped ZnO diluted magnetic semiconductors. J. Mater. Sci. Mater. Electron. 26(4), 2466–2470 (2015)

    Article  Google Scholar 

  45. M.D. McCluskey, S.J. Jokela, Defects in ZnO. J. Appl. Phys. 106, 071101 (2009)

    Article  Google Scholar 

  46. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  47. A. Boonchun, W.R.L. Lambrecht, First-principles study of oxygen vacancies in MgxZn1−xO alloys. Phys. Rev. B 81, 024103 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11304405, 11074314 and 51472038) and the Nature Science Foundation of Chongqing (Grant Nos. CSTC2013jjB0023, cstc2012gg-gjhz50001 and cstc2013jcyjA50031), D&R Projects of Chongqing Education Commission under Grant No. KJ132209, the Fundamental Research Funds for the Central Universities (CDJZR12138801, CDJZR14135502, CQDXWL2012017 and 106112015CDJXY300002), and the Sharing Fund of Large-scale Equipment of Chongqing University (Grant Nos. 201412150103, 201412150104 and 201412150105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wu, Liang Fang or Chunyang Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, C., Li, W., Wu, F. et al. Effect of Er doping on microstructure and optical properties of ZnO thin films prepared by sol–gel method. J Mater Sci: Mater Electron 26, 8732–8739 (2015). https://doi.org/10.1007/s10854-015-3550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3550-x

Keywords

Navigation