Skip to main content
Log in

Indium, chromium and nickel-modified eutectic Sn–0.7 wt% Cu lead-free solder rapidly solidified from molten state

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn–Cu eutectic modified by minor In, Cr and Ni additions are one of the major alternatives to lead-free solders. The results show that nanostructured solders produced by rapid solidification are dependent on melting properties and the melting temperature. It is found that the In, Cr or Ni addition has the effect of suppressing the formation of eutectic rapidly solidified Sn–0.7Cu alloy. The results indicated that the melting temperatures (Tm) of Sn–0.7Cu are modified to lower temperature by In, Cr and Ni additions. The formation of new intermetallic compounds such as In3Sn, Cu6Sn5, Cu10Sn3, and NiSn are more uniformly distributed inside Sn-rich phase effectively enhancing the hardness and creep resistance of the eutectic Sn–0.7Cu solder joint at room temperature. The results of these tests are consistent with positive effect of the In, Cr and Ni in enhancing the performance of the eutectic Sn–0.7Cu solder as a practical to lead-free solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Kamal, J.C. Pieri, R. Jouty, Mem. Sci. Rev. Met. PP, 143–148 (1983)

    Google Scholar 

  2. N.R. Green, J.A. Charles, G.C. Smith, Mater. Sci. Technol. 10(11), 977 (1994)

    Article  Google Scholar 

  3. Q. Li, E. Johonsen, L. Sarhoft-Kristesen, J. Mater. Res. 7, 2756 (1992)

    Article  Google Scholar 

  4. G. Thomas, R.H. Willens, Acta Metall 13, 139 (1965)

    Article  Google Scholar 

  5. G. Thomas, R.H. Willens, Acta Metall 14, 138 (1966)

    Google Scholar 

  6. D.Q. Yu, H.P. Xie, I. Wang, J. Alloys Compd. 385, 119–125 (2004)

    Article  Google Scholar 

  7. M. Adtew, G. Selvaduray, Mater. Sci. Eng. R Rep. 27, 95–141 (2000)

    Article  Google Scholar 

  8. N.S. Liu, K.L. Lin, J. Alloys Compd. 456, 466–473 (2008)

    Article  Google Scholar 

  9. N. Lee Mater. Advan. Packaging. 181–218 (2008)

  10. K. Zeng, JOM J. Miner. Metals Mater. Soc. 61(6), 28 (2009)

    Article  Google Scholar 

  11. K. Kim, S. Huh, K. Suganuma, J. Alloys Compd. 352(1–2), 226–236 (2003)

    Article  Google Scholar 

  12. S.S. Babu, Int. Mater. Rev. 54(6), 333–367 (2009)

    Article  Google Scholar 

  13. N. Chawla, Int. Mater. Rev. 54(6), 368–384 (2009)

    Article  Google Scholar 

  14. S.W. Chen, C.H. Wang, S.K. Lin, C.N. Chiu, J. Mater. Sci. Mater. Electron. 18(1–3), 19–37 (2007)

    Google Scholar 

  15. Q.Z. Cui, F. Gao, S. Mukherjee, Z.Y. Gu, Small 5(11), 1246–1257 (2009)

    Article  Google Scholar 

  16. Y.C. Lin, X. Chen, J. Adhes. Sci. Technol. 22(14), 1631–1657 (2008)

    Article  Google Scholar 

  17. H. Ma, J.C. Suhling, J. Mater. Sci. 44(5), 1141–1158 (2009)

    Article  Google Scholar 

  18. A. Micol, C. Martin, O. Dalverny, M. Mermet-Guyennet, M. Karama, Microelectron. Reliab. 49(6), 631–641 (2009)

    Article  Google Scholar 

  19. E. Suhir, Appl. Mech. Rev. 62(4), 4878–4885 (2009)

    Article  Google Scholar 

  20. M.J. Yim, Y. Li, K.S. Moon, K.W. Paik, C.P. Wong, J. Adhes. Sci. Technol. 22(14), 1593–1630 (2008)

    Article  Google Scholar 

  21. L. Zhang, S.B. Xue, L.L. Gao, Z. Sheng, H. Ye, Z.X. Xiao, G. Zeng, Y. Chen, S.L. Yu, J. Mater. Sci. Mater. Electron. 21(1), 1–15 (2010)

    Article  Google Scholar 

  22. L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Z. Sheng, Y. Chen, S.L. Yu, J. Mater. Sci. Mater. Electron. 20(8), 685–694 (2009)

    Article  Google Scholar 

  23. C. Andersson, P. Sun, J. Liu, J. Alloys Compd. 457(1–2), 97–105 (2008)

    Article  Google Scholar 

  24. A.A. El-Daly, A.E. Hammad, J. Alloys Compd. 509, 8554–8560 (2011)

    Article  Google Scholar 

  25. R.N. Chukka, S. Telu, NRMR Bhargava, Chen L. J. Mater. Sci. Mater. Electron. 22, 181–285 (2011)

    Article  Google Scholar 

  26. G. Zeng, S. Xue, I. Gao, I. Zhang, Y. Hu, Z. Lai, J. Alloys Compd. 509, 7152–7162 (2011)

    Article  Google Scholar 

  27. G. Li, Y. Shi, H. Hao, Z. Xia, Y. Lei, F. Guo, J. Alloys Compd. 491, 382–385 (2010)

    Article  Google Scholar 

  28. B.S.S. Chandra Rao, K.M. Kumer, V. Kripesh, K.Y. Zeng, Mater. Sci. Eng. A 528, 4166–4172 (2011)

    Article  Google Scholar 

  29. T.H. Chuang, M.W. Wu, S.Y. Chang, S.F. Ping, I.C. Tsao, J. Mater. Sci. Mater. Electron. (2011). doi:10.1007/s10854-010-0253-1

    Google Scholar 

  30. E. Hodulova, M. Pacut, E. Lechovic, B. Simekova, K. Ulrich, J. Alloys Compd. 509, 7052–7059 (2011)

    Article  Google Scholar 

  31. T. Nishimura, S. Suenaga, M. Ikeda, Forth pacific rim international conference on advanced materials and processing I, 1087–1090 (2001)

  32. T. El-Ashram, R. Shalaby, J. Electron. Mater. 34(2), 212–215 (2005)

    Article  Google Scholar 

  33. J. Hwang, Z. Guo, H. Koenigsmann, Sold. Surf. Mount Technol. 13(2), 7–13 (2001)

    Article  Google Scholar 

  34. Y.A. Geller, A.G. Rakhshtadt, Sci. Mater. 138, 138–141 (1977)

  35. J.M. Ide, Rev. Sci. Instrum. 6, 296 (1935)

    Article  Google Scholar 

  36. S. Sppinert, W.E. Teffit, ASTM Proc. 61, 1221 (1961)

    Google Scholar 

  37. E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurements (McGraw Hill, New York, 1973), p. 82

    Google Scholar 

  38. T. El-Ashram, R.M. Shalaby, Electron. Mater. 34, 212 (2005)

    Article  Google Scholar 

  39. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesely, Reading, 1978), p. 248

    Google Scholar 

  40. B.D.Cullity, Elements of X-ray Diffraction, 2nd edn (USA, 1959) ch. 10, p. 317

  41. A. Peters, B. Chung, C. Cohen, Appl. Phys. Lett. 71, 2391 (1997)

    Article  Google Scholar 

  42. C. Zou, Y. Gao, B. Yang, Q. Zhai, C. Anderson, J. Liu, Solder. Surf. Mount Technol. 21(2), 9–13 (2009)

    Article  Google Scholar 

  43. R.N. Chukka, S. Telu, N.R.M.R. Bhargava, L. Chen, J. Mater. Sci. Mater. Electron. 22(3), 281–285 (2011)

    Article  Google Scholar 

  44. R.M. Shalaby, J. Mater. Electron. 16, 187 (2005)

    Article  Google Scholar 

  45. M.C. Smith, Principles of Physical metallurgy (Allied Pacific, Private Limited, 1962) Indian Addition, Printed in India by special arrangement with the original publishers, Harber and Brothers of New York and the copyright holders

Download references

Acknowledgments

The author is grateful to Professor M. Kamal, Head of Metal Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt, for his encouragement and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizk Mostafa Shalaby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, R.M. Indium, chromium and nickel-modified eutectic Sn–0.7 wt% Cu lead-free solder rapidly solidified from molten state. J Mater Sci: Mater Electron 26, 6625–6632 (2015). https://doi.org/10.1007/s10854-015-3261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3261-3

Keywords

Navigation