Skip to main content
Log in

Doping effects on Bi-2212 high temperature superconducting thick films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Superconducting thick films of Bi2Sr2Ca0.95M0.05Cu2.0O8+δ (Bi-2212) with M = K, Li, and Al were fabricated by a dip coating process. The influences of different doping elements on the lattice structure, electrical transport properties and related superconducting properties were systematically investigated. XRD analyses confirmed that all the doping ions have successfully entered into the Bi-2212 matrix, and led to a systematical change of lattice parameters. Due to the change of thermodynamic properties with doping, the phase evolution process changed during the sintering process. Thus both the content of secondary phases and the size of Bi-2212 crystals changed, which influenced the intergrain connections. The carrier concentrations of thick films were also influenced by doping, which contributed to the changes of critical temperature. It can be deduced that the hole doping with either K+ or Li+ can tune the samples into overdoping region, thus led to the increase of critical current at 77 K with the maximum critical current density of ~5300 A/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.S. Alexandrov, V.N. Zavaritsky, W.Y. Liang, P.L. Nevsky, Phys. Rev. Lett. 76, 983 (1996)

    Article  Google Scholar 

  2. H. Miao, K.R. Marken, M. Meinesz, B. Czabaj, S. Hong, IEEE Trans. Appl. Supercond 15, 2554–2557 (2005)

    Article  Google Scholar 

  3. D.C. Larbalestier, J. Jiang, U.P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N.C. Craig, P.J. Lee, E.E. Hellstrom, Nat. Mater. 13, 375–381 (2014)

    Article  Google Scholar 

  4. H.M. Weijers, U.P. Trociewitz, W.D. Markiewicz, J. Jiang, D. Myers, E.E. Hellstrom, A. Xu, J. Jaroszynski, P. Noyes, Y. Viouchkov, D.C. Larbalestier, I.E.E.E. Trans, Appl. Supercond. 20, 576–582 (2010)

    Article  Google Scholar 

  5. T. Kiyoshi, A. Sato, H. Wada, S. Hatashi, M. Shimada, Y. Kawate, I.E.E.E. Trans, Appl. Supercond. 10, 472–477 (1999)

    Article  Google Scholar 

  6. Z. Melhem, S. Ball, S. Chappell, Phys. Procedia 36, 805–811 (2012)

    Article  Google Scholar 

  7. M. Dalban-Canassy, D.A. Myers, U.P. Trociewitz, J. Jiang, E.E. Hellstrom, Y. Viouchkov, D.C. Larbalestier, Supercond. Sci. Technol. 25, 115015 (2012)

    Article  Google Scholar 

  8. J. Bock, F. Breuer, C.E. Bruzek, N. Lallouet, M.O. Rikel, H. Walter, in WAMS 2004, ed. by L. Bottura, M. Buzio, T. Taylor (Archamps, 2004), pp. 149–155

  9. K. Ohsemochi, K. Koyanagi, T. Kurusu, T. Tosaka, K. Tasaki, M. Ono, Y. Ishii, K. Shimada, S. Nomura, K. Kidoguchi, H. Onoda, N. Hirano, S. Nagaya, J. Phys. Conf. Ser. 43, 825–828 (2006)

    Article  Google Scholar 

  10. P. Chen, U.P. Trociewitz, M. Dalban-Canassy, J. Jiang, E.E. Hellstrom, D.C. Larbalestier, Supercond. Sci. Technol. 26, 075009 (2013)

    Article  Google Scholar 

  11. D. Bourgault, E. Flahaut, A. Antonevici, C.E. Bruzek, N. Lallouet, J.L. Soubeyroux, R. Tournier, Supercond. Sci. Technol. 17, 463 (2004)

    Article  Google Scholar 

  12. D. Bourgault, E. Flahaut, A. Antonevici, R. Tournier, J.L. Soubeyroux, N. Lallouet, C.E. Bruzek, Cryogenics 44, 681–686 (2004)

    Article  Google Scholar 

  13. S. Pavard, D. Bourgault, C. Villard, R. Tournier, Phys. C 316, 198–204 (1999)

    Article  Google Scholar 

  14. J. Kase, K. Togano, H. Kumakura, D.R. Dietderich, N. Irisawa, T. Morimoto, H. Maeda, Jpn. J. Appl. Phys. 29, L1096 (1990)

    Article  Google Scholar 

  15. D. Sager, L.J. Gauckler, M. Chen, Phys. C 420, 69–77 (2005)

    Article  Google Scholar 

  16. J.A. Alarco, A. Ilushechkin, T. Yamashita, A. Bhargava, J. Barry, I.D.R. Machinnon, Mater. Sci. Eng. B 45, 102–107 (1997)

    Article  Google Scholar 

  17. W. Zhang, E.E. Hellstrom, Phys. C 218, 141–152 (1993)

    Article  Google Scholar 

  18. X.L. Wang, H.K. Liu, S.X. Dou, J. Horvat, D. Millikon, G. Heine, W. Lang, H.M. Luo, S.Y. Ding, J. Appl. Phys. 89, 7669 (2001)

    Article  Google Scholar 

  19. A.L. Crossley, Y.H. Li, A.D. Caplin, J.L. MacManus-Driscoll, Phys. C 314, 12–18 (1999)

    Article  Google Scholar 

  20. A.B. Kulakov, I.K. Bdikin, S.A. Zver’kov, G.A. Emel’chenko, G. Yang, J.S. Abell, Phys. C 371, 45–51 (2002)

    Article  Google Scholar 

  21. H.L. Su, F. Vasiliu, P. Majewski, F. Aldinger, Phys. C 256, 345–352 (1996)

    Article  Google Scholar 

  22. A. Amira, Y. Boudjadja, A. Saoudel, A. Varilci, M. Akdogan, C. Terzioglu, M.F. Mosbah, Phys. B 406, 1022–1027 (2011)

    Article  Google Scholar 

  23. S. Vinu, P.M. Sarun, R. Shabna, P.M. Aswathy, J.B. Anooja, U. Syamaprasad, Phys. B 405, 4355–4359 (2010)

    Article  Google Scholar 

  24. R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloys Compd. 493, 11–16 (2010)

    Article  Google Scholar 

  25. R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloys Compd. 481, 797–801 (2010)

    Article  Google Scholar 

  26. P.M. Saruna, S. Vinua, R. Shabnaa, A. Bijub, U. Syamaprasad, J. Alloys Compd. 472, 13–17 (2009)

    Article  Google Scholar 

  27. S. Vinu, P.M. Sarun, R. Shabna, A. Biju, U. Syamaprasad, Mater. Lett. 62, 4421–4424 (2008)

    Article  Google Scholar 

  28. S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. 21, 045001 (2008)

    Article  Google Scholar 

  29. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Lett. 62, 2725–2728 (2008)

    Article  Google Scholar 

  30. A. Biju, U. Syamaprasad, A. Rao, J.G. Xu, K.M. Sivakumar, Y.K. Kuo, Phys. C 466, 69–75 (2007)

    Article  Google Scholar 

  31. X. Sun, X. Zhao, W. Wu, X. Fan, X.-G. Li, Phys. C 305, 227–232 (1998)

    Article  Google Scholar 

  32. C.B. Mao, L. Zhou, X.Y. Sun, X.Z. Wu, Phys. C 281, 35–44 (1997)

    Article  Google Scholar 

  33. T.D. Hien, N.K. Man, K.B. Garg, J. Magn. Magn. Mater. 262, 508–513 (2003)

    Article  Google Scholar 

  34. J.L. Tallon, J.R. Cooper, P.S.I.P.N.D. Silva, G.V.M. Williams, J.W. Loram, Phys. Rev. Lett. 75, 4114–4117 (1995)

    Article  Google Scholar 

  35. T. Shen, J. Jiang, A. Yamamoto, U.P. Trociewitz, J. Schwartz, E.E. Hellstrom, D.C. Larbalestier, Appl. Phys. Lett. 95, 152516 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National “973” Project, under contract No. 2011CBA00104, National Natural Science Foundation of China under contract No. 51472206,the international scientific and technological cooperation projects of China No. S2010GR0518, the national ITER program of China No. 2013GB110001, and the Innovative Research Team of Shaanxi province No. 2013KCT-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengnan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, C., Hao, Q. et al. Doping effects on Bi-2212 high temperature superconducting thick films. J Mater Sci: Mater Electron 26, 6380–6385 (2015). https://doi.org/10.1007/s10854-015-3226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3226-6

Keywords

Navigation