Skip to main content
Log in

Dielectric properties and thermal properties of calcium copper titanate and barium titanate hybrid fillers filled epoxy thin film composites for electronic packaging applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ceramic fillers such as calcium copper titanate, CaCu3Ti4O12 (CCTO) and barium titanate (BaTiO3) were used as hybrid fillers to produce hybrid thin film composites for electronic packaging applications. Results indicated that positive hybrid effect in dielectric and thermal properties showed by the hybrid composites. Hybrid fillers with the ratio of 70:30 of CCTO:BaTiO3 filled epoxy thin film composite exhibited the highest dielectric constant, lowest coefficient thermal expansion value, moderate thermal stability and dynamic mechanical properties compared to those of hybrid composites with the ratio of 30:70 and 50:50, unfilled epoxy, 20 CEC and 20 BEC, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.Y. Lee, J.G. Hyun, H.S. Kim, K.W. Paik, IEEE Trans. Adv. Packag. 30, 428–433 (2007)

    Article  Google Scholar 

  2. J. Xu, K.S. Moon, P. Pramanik, S. Bhattacharya, C.P. Wong, IEEE Trans. Compon. Packag. Technol. 30, 248–253 (2007)

    Article  Google Scholar 

  3. R.N. Das, F.D. Egitto, J.M. Lauffer, V.R. Markovich, IEEE Trans. Compon. Packag. Man. 31, 97–103 (2008)

    Google Scholar 

  4. P. Duran, D. Gutierrez, J. Tartaj, C. Moure, Ceram. Int. 28, 283–292 (2002)

    Article  Google Scholar 

  5. Z.F. Zhang, X.F. Bai, J.W. Zha, W.K. Li, Z.M. Dang, J. Compos. Sci. Technol. 97, 100–105 (2014)

    Article  Google Scholar 

  6. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)

    Article  Google Scholar 

  7. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673–676 (2001)

    Article  Google Scholar 

  8. E.K. Michael, S. Trolier-McKinstry, J. Am. Ceram. Soc. 98, 1223–1229 (2015)

    Article  Google Scholar 

  9. L. Sirdeshmukh, K.K. Kumar, S.B. Laxman, A.R. Krishna, G. Sathaiah, Bull. Mater. Sci. 21, 219–226 (1998)

    Article  Google Scholar 

  10. J.I. Weon, H.J. Sue, J. Mater. Sci. 41, 2291–2300 (2006)

    Article  Google Scholar 

  11. G.S. Deshmukh, D.R. Peshwe, S.U. Pathak, J.D. Ekhe, J. Polym. Res. 18, 1081–1090 (2011)

    Article  Google Scholar 

  12. B. Kord, World Appl. Sci. J. 13, 129–132 (2011)

    Google Scholar 

  13. K.C. Etika, L. Liu, L.A. Hess, J.C. Grunlan, Carbon 47, 3128–3136 (2009)

    Article  Google Scholar 

  14. A.K. Helmi, M.A. Hazizan, M.S. Shuhadah, Adv. Mater. Res. 620, 236–240 (2013)

    Google Scholar 

  15. S. Luo, S. Yu, R. Sun, C.P. Wong, Appl. Mater. Interfaces 6, 176–182 (2014)

    Article  Google Scholar 

  16. A.K. Nurdina, M. Mariatti, P. Samayamutthirian, J. Vinyl Addit. Technol. 15, 20–28 (2009)

    Article  Google Scholar 

  17. S.P. Su, Y.H. Xu, C.A. Wilkie, in Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications, ed. by T. McNally, P. Pötschke (Woodhead Publishing Limited, Cambridge, 2011), pp. 482–509

  18. K.A. Malini, E.M. Mohammed, S. Sindhu, J. Mater. Sci. 36, 5551 (2001)

    Article  Google Scholar 

  19. J.X. Lu, UMI microform, United State of America, 2008

  20. P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, J. Compos. Sci. Technol. 70, 539 (2010)

    Article  Google Scholar 

  21. G. Tsangaris, N. Kouloumbi, S. Kyvelidis, Mater. Chem. Phys. 44, 245 (1996)

    Article  Google Scholar 

  22. C.L. Poh, M. Mariatti, M.N.A. Fauzi, C.H. Ng, C.K. Chee, T.P. Chuah, J. Mater. Sci. Mater. Electron. 25, 2111 (2014)

    Article  Google Scholar 

  23. R. Voo, M. Mariatti, L.C. Sim, J. Plast. Film Sheeting 27, 331 (2011)

    Article  Google Scholar 

  24. C.L. Wu, M.Q. Zhang, M.Z. Rong, K. Friedrich, J. Compos. Sci. Technol. 62, 1327 (2002)

    Article  Google Scholar 

  25. R. Voo, M. Mariatti, L.C. Sim, J. Polym. Adv. Technol. 23, 1620 (2012)

    Article  Google Scholar 

  26. M. Oleksy, S.R. Karolina, M. Heneczkowski, R. Oliwa, T. Jesionowski, Materials 7, 6064–6091 (2014)

    Article  Google Scholar 

  27. H. Thomas, V.S. Dorothee, Materials 3, 3468–3517 (2010)

    Article  Google Scholar 

  28. P.S. Anjana, S. Uma, J. Philip, M.T. Sebastian, J. Appl. Polym. Sci. 118, 751–758 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Universiti Sains Malaysia and the Ministry of Education, and Explorating Research Grant Scheme (ERGS) for granting the research fund used for this project (Project No. 6730109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidina, D.S., Mariatti, M. & Julie, M.J. Dielectric properties and thermal properties of calcium copper titanate and barium titanate hybrid fillers filled epoxy thin film composites for electronic packaging applications. J Mater Sci: Mater Electron 26, 6245–6251 (2015). https://doi.org/10.1007/s10854-015-3210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3210-1

Keywords

Navigation