Skip to main content
Log in

Electrical, optical and structural properties of rod shaped Bi2S3 thin films deposited by dip technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper, we have reported the room temperature growth of bismuth sulphide (Bi2S3) thin films by dip method and detailed characterization of these films. The films were deposited from a reaction bath containing bismuth nitrate, glycine and sodium thiosulphate. We have analyzed the structure, morphology, composition, optical and electrical properties of Bi2S3 thin films. X-ray diffraction pattern showed that the films were polycrystalline. From optical absorption spectra the band gap of the material is estimated to be 1.6 eV. The electrical conductivity is of the order of 10−6 (Ω cm)−1. Composition analyses by EDAX show that the films are nearly stoichiometric in composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 43 (2013)

    Article  Google Scholar 

  2. B. Pejova, I. Grozdanov, Mater. Chem. Phys. 99, 39 (2006)

    Article  Google Scholar 

  3. R. Sathyamoorthy, P. Sudhagar, S. Chandramohan, U. Pal, J. Nanosci. Nanotechnol. 8, 6481 (2008)

    Google Scholar 

  4. S. Gadakh, C. Bhosale, Mater. Chem. Phys. 64, 5 (2000)

    Article  Google Scholar 

  5. R. Mane, B. Sankapal, C. Lokhande, Mater. Chem. Phys. 60, 196 (1999)

    Article  Google Scholar 

  6. G. Zhu, P. Liu, J. Zhou, X. Bian, X. Wang, J. Li, B. Chen, Mater. Lett. 62, 2335 (2008)

    Article  Google Scholar 

  7. C. Tang, Y. Zhang, X. Dou, G. Li, J. Cryst. Growth 312, 692 (2010)

    Article  Google Scholar 

  8. T. Thongtem, C. Pilapong, J. Kavinchan, A. Phuruangrat, S. Thongtem, J. Alloys Compd. 500, 195 (2010)

    Article  Google Scholar 

  9. P. Kumar, N. Jain, R. Agarwal, Chalcogen. Lett. 7, 89 (2010)

    Google Scholar 

  10. C. Tang, G. Wang, H. Wang, Y. Zhang, G. Li, Mater. Lett. 62, 3663 (2008)

    Article  Google Scholar 

  11. C. Falcony, M. Garcia, A. Ortiz, J.C. Alonso, J. Appl. Phys. 72, 1525 (1992)

    Article  Google Scholar 

  12. Y. Lu, J. Jia, G. Yi, Cryst. Eng. Comm. 14, 3433 (2012)

    Article  Google Scholar 

  13. K. Mageshwari, R. Sathyamoorthy, P. Sudhagar, Y. Kang, Appl. Surf. Sci. 257, 7245 (2011)

    Article  Google Scholar 

  14. S. Liufu, L. Chen, Q. Yao, C. Wang, Appl. Phys. Lett. 90, 112106 (2007)

    Article  Google Scholar 

  15. F. Gao, Q. Lu, S. Komarneni, Chem. Commun. 4, 531 (2005)

    Article  Google Scholar 

  16. Z. Liu, S. Peng, Q. Xie, Z. Hu, Y. Yang, S. Zhang, Y. Qian, Adv. Mater. 15, 936 (2003)

    Article  Google Scholar 

  17. R. Malakooti, L. Cademartiri, Y. Akçakir, S. Petrov, A. Migliori, G. Ozin, Adv. Mater. 18, 2189 (2006)

    Article  Google Scholar 

  18. C. Ye, G. Meng, Z. Jiang, Y. Wang, G. Wang, L. Zhang, J. Am. Chem. Soc. 124, 15180 (2002)

    Article  Google Scholar 

  19. M. Sigman, B. Korgel, Chem. Mater. 17, 1655 (2005)

    Article  Google Scholar 

  20. L. Cademartiri, R. Malakooti, P. O’Brien, A. Migliori, S. Petrov, N. Kherani, G. Ozin, Angew. Chem. Int. 47, 3814 (2008)

    Article  Google Scholar 

  21. L. Li, N. Sun, Y. Huang, Y. Qin, N. Zhao, J. Gao, M. Li, H. Zhou, L. Qi, Adv. Funct. Mater. 18, 1194 (2008)

    Article  Google Scholar 

  22. J. Tang, A. Alivisatos, Nano Lett. 6, 2701 (2006)

    Article  Google Scholar 

  23. Q. Lu, F. Gao, S. Komarneni, J. Am. Chem. Soc. 126, 54 (2004)

    Article  Google Scholar 

  24. J. Jiang, S. Yu, W. Yao, H. Ge, G. Zhang, Chem. Mater. 17, 6094 (2005)

    Article  Google Scholar 

  25. G. Nie, X. Lu, J. Lei, L. Yang, C. Wang, Electro. Acta 154, 24 (2015)

    Article  Google Scholar 

  26. A. Begum, A. Hussain, A. Rahman, Chalcogen. Lett. 8, 283 (2011)

    Google Scholar 

  27. A. Ubale, S. Shirbhate, J. Alloys Compd. 497, 228 (2010)

    Article  Google Scholar 

  28. S. Gadakh, C. Bhosale, Mater. Res. Bull. 35, 1097 (2000)

    Article  Google Scholar 

  29. R. Ahire, B. Sankapal, C. Lokhande, Mater. Res. Bull. 36, 199 (2001)

    Article  Google Scholar 

  30. K. Mageshwari, R. Sathyamoorthy, Vacuum 86, 2029 (2012)

    Article  Google Scholar 

  31. P. Rajalakshmi, R. Oommen, R. Oommen, C. Sanjeeviraja, Chalcogen. Lett. 8, 683 (2011)

    Google Scholar 

  32. V. Killedar, S. Katore, C. Bhosale, Mater. Chem. Phys. 64, 166 (2000)

    Article  Google Scholar 

  33. R. Mane, B. Sankapal, C. Lokhande, Mater. Chem. Phys. 60, 158 (1999)

    Article  Google Scholar 

  34. S. Biswas, A. Mandal, D. Mukharjee, P. Pramanik, J. Electrochem. Soc. 133, 48 (1996)

    Article  Google Scholar 

  35. R. He, X. Qian, J. Yin, Z. Zhu, J. Cryst. Growth 252, 505 (2003)

    Article  Google Scholar 

  36. X. Liu, J. Cui, L. Zhang, W. Yu, F. Guo, Y. Qian, Nanotechnology 16, 1771 (2005)

    Article  Google Scholar 

  37. S. Prabahar, M. Dhanam, J. Cryst. Growth 285, 41 (2005)

    Article  Google Scholar 

  38. J. Wang, Y. Li, Mater. Chem. Phys. 87, 420 (2004)

    Article  Google Scholar 

  39. B. Cullity, Elements of X-ray diffraction (Wesly, USA, 1956)

    Google Scholar 

  40. P. Chate, D. Sathe, P. Hankare, U. Sankpal, J. Mater. Sci.: Mater. Electron. 24, 2000 (2013)

    Google Scholar 

  41. D. Richards, R. Angelis, M. Kramer, J. House, D. Cunard, D. Shea, Adv. X-ray Anal. 47, 354 (2004)

    Google Scholar 

  42. S. Hake, P. Chate, D. Sathe, P. Hankare, V. Bhuse, J. Mater. Sci.: Mater. Electron. 25, 811 (2014)

    Google Scholar 

  43. P. Rajlakshmi, R. Oommen, C. Sanjeeviraja, Chalcogen. Lett. 8, 623 (2011)

    Google Scholar 

  44. R. Mane, B. Sankapal, C. Lokhande, Mater. Res. Bull. 35, 587 (2000)

    Article  Google Scholar 

  45. R. Brindha, K. Devi, Int. J. Chemtech. Res. 6, 5632 (2014)

    Google Scholar 

  46. R. Mane, B. Sankpal, C. Lokhande, Thin Solid Films 359, 136 (2000)

    Article  Google Scholar 

  47. E. Masumdar, V. Gaikwad, V. Pujari, P. More, L. Deshmukh, Mater. Chem. Phys. 77, 669 (2002)

    Article  Google Scholar 

  48. S. Erat, H. Metina, M. Ari, Mater. Chem. Phys. 111, 114 (2008)

    Article  Google Scholar 

  49. A. Khomane, Alloys Compd 506, 849 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The author (PAC) thankfully acknowledges to Dr. D.J. Sathe (KIT) for valuable discussion during research and preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chate, P.A., Lakde, S.D. Electrical, optical and structural properties of rod shaped Bi2S3 thin films deposited by dip technique. J Mater Sci: Mater Electron 26, 5847–5851 (2015). https://doi.org/10.1007/s10854-015-3145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3145-6

Keywords

Navigation