Skip to main content
Log in

Synthesis and characterization of Cu2ZnSnS4 nanocrystals prepared by microwave irradiation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we report a rapid and single-step synthesis of Cu2ZnSnS4 (CZTS) nanocrystals using microwave-assisted solution method. The influence of reaction temperature and reaction time on the phase purity, crystallographic structure, morphology and optical property of CZTS particles were investigated using X-ray diffraction, Raman spectroscopy, scanning electronic microscope, transmission electron microscopy and ultraviolet–visible spectrometer. Results revealed that the single kesterite CZTS particles with no secondary phase can be obtained by preparing samples at minimal temperature of 170 °C. The sphere-like particles, each of which contains many nanocrystals, decrease effectively in size when increasing the reaction temperature from 170 to 200 °C. The CZTS nanocrystals have an optical band gap around 1.5 eV, which is optimal for photovoltaic applications. In addition, minimal reaction time of 10 min is also essential for the growth of single kesterite CZTS. Our study demonstrated that appropriate reaction temperature and reaction time are crucial for the synthesis of high-quality CZTS by microwave irradiation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Phys. Status Solidi Rapid Res. Lett. 8, 219 (2014)

    Article  Google Scholar 

  2. T. Wada, S. Nakamura, T. Maeda, Prog. Photovolt. Res. Appl. 20, 520 (2012)

    Article  Google Scholar 

  3. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki et al., Thin Solid Films 517, 2455 (2009)

    Article  Google Scholar 

  4. D.B. Mitzi, O. Gunawan, T.K. Todorov, K.J. Wang, S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011)

    Article  Google Scholar 

  5. X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, Int. J. Photoenergy 2014, 613173 (2014)

    Article  Google Scholar 

  6. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  Google Scholar 

  7. F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai et al., Sol. Energy Mater. Sol. Cells 12, 2431 (2010)

    Article  Google Scholar 

  8. K. Moriya, K. Tanaka, H. Uchiki, Jpn. J. Appl. Phys. 46, 5780 (2007)

    Article  Google Scholar 

  9. T. Washio, T. Shinji, S. Tajima, J. Mater. Chem. 22, 4021 (2012)

    Article  Google Scholar 

  10. N.M. Shinde, R.J. Deokate, C.D. Lokhande, J. Anal. Appl. Pyrolysis 100, 12 (2013)

    Article  Google Scholar 

  11. K. Zhang, J. Tao, J. He, J. Mater. Sci.: Mater. Electron. 25, 2703 (2014)

    Google Scholar 

  12. G.L. Agawane, S.W. Shin, S.A. Vanalakar, J. Mater. Sci.: Mater. Electron. 26, 1900 (2015)

    Google Scholar 

  13. R.S. Kumar, B.D. Ryu, S. Chandramohan, J.K. Seol, S.K. Lee, C.H. Hong, Mater. Lett. 86, 174 (2012)

    Article  Google Scholar 

  14. W. Wang, H. Shen, F. Jiang, X. He, Z. Yue, J. Mater. Sci.: Mater. Electron. 24, 1813 (2013)

    Google Scholar 

  15. K. Wang, P. Chen, C. Tseng, CrystEngComm 15, 9863 (2013)

    Article  Google Scholar 

  16. T.R. Knutson, P.J. Hanson, E.S. Aydilb, R.L. Penn, Chem. Commun. 50, 5902 (2014)

    Article  Google Scholar 

  17. X.T. Lu, Z.B. Zhuang, Q. Peng, Y.D. Li, Chem. Commun. 47, 3141 (2011)

    Article  Google Scholar 

  18. A. Wei, Z. Yan, Y. Zhao, M. Zhuang, J. Liu, Int. J. Hydrog. Energy 4, 797 (2015)

    Article  Google Scholar 

  19. Y.L. Zhou, W.H. Zhou, M. Li, Y.F. Du, S.X. Wu, J. Phys. Chem. C 115, 19632 (2011)

    Article  Google Scholar 

  20. P.R. Ghediya, T.K. Chaudhuri, J. Mater. Sci.: Mater. Electron. 26, 1908 (2015)

    Google Scholar 

  21. S.W. Shin, J.H. Han, C.Y. Park, S. Kim, Y.C. Park, G.L. Agawane et al., J. Alloys. Compd. 541, 192 (2012)

    Article  Google Scholar 

  22. W. Wang, H. Shen, X. He, J. Li, J. Nanopart. Res. 16, 2437 (2014)

    Article  Google Scholar 

  23. J. Chen, Q. Chen, H. Yuan, T. Wang, F. Zhou, X. Dou, S. Zhuang, J. Mater. Sci.: Mater. Electron. 25, 873 (2014)

    Google Scholar 

  24. W. Wang, H. Shen, H. Yao, J. Mater. Sci.: Mater. Electron. 26, 1449 (2015)

    Google Scholar 

  25. Q. Guo, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 131, 11672 (2009)

    Article  Google Scholar 

  26. P.A. Fernandes, P.M.P. Salomé, A.F. Cunha, J. Alloys. Compd. 509, 7600 (2011)

    Article  Google Scholar 

  27. Y. Nien, B. Zaman, J. Quyang, I. Chen, C. Hwang, K. Yu, Mater. Lett. 62, 4522 (2008)

    Article  Google Scholar 

  28. B. Flynn, W. Wang, C. Chang, G.S. Herman, Phys. Status Solidi A Appl. Mater. Sci. 209, 2186 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports from the National Natural Science Foundation of China (Grant Nos. 51202037 and 61204049) and Science and Technology Innovation Project of Department of Education of Guangdong Province Projects (No. 2013KJCX0065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixiang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Tao, W., Chen, X. et al. Synthesis and characterization of Cu2ZnSnS4 nanocrystals prepared by microwave irradiation method. J Mater Sci: Mater Electron 26, 5645–5652 (2015). https://doi.org/10.1007/s10854-015-3114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3114-0

Keywords

Navigation