Skip to main content
Log in

Synthesis and characterization of iron-doped titania nanohoneycomb and nanoporous semiconductors by electrochemical anodizing method as good visible light active photocatalysts

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Iron-doped TiO2 nanostructures (FeTiO2NSs) were prepared by in situ electrochemical anodizing of titanium in a single-step process in the presence of 3, 9, 15 and 21 mM of potassium ferricyanide. For the first time, K3Fe(CN)6 was used as the iron source in doping process. The resulting samples were characterized by FE-SEM, XRD and EDX. SEM images of the resulting samples showed that for a specific morphology, appropriate concentrations of potassium ferricyanide are necessary. Diffuse reflectance spectra showed a shift toward longer wavelengths relative to pure TiO2 nanotube (TiO2NT). The dependence of photo-activity on iron doping on TiO2 was studied for photodegradation of methylene blue (MB). After iron-doping, the removal rate of MB increased under visible light radiation. The results showed that FeTiO2NSs samples have excellent photocatalytic performance. The sample FeTiO2NSs2 exhibited better photocatalytic activity than the pure TiO2NTs and FeTiO2NSs samples fabricated using other iron concentrations. This work demonstrated a feasible and simple anodizing method to fabricate an effective, reproducible, and inexpensive visible-light-driven photo-catalyst for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Cong, Z. Li, Y. Zhang, Q. Wang, Q. Xu, Chem. Eng. J. 191, 356 (2012)

    Article  Google Scholar 

  2. S. Ben Abdelmelek, J. Greaves, K.P. Ishida, W.J. Cooper, W.H. Song, Environ. Sci. Technol. 45, 3665 (2011)

    Article  Google Scholar 

  3. Y.Q. Cong, Z.C. Wu, J. Phys. Chem. C 111, 3442 (2007)

    Article  Google Scholar 

  4. A. Fujishima, K. Honda, Nature 106, 4428 (1972)

    Google Scholar 

  5. Y. Xia, L. Yin, Phys. Chem. Chem. Phys. 15, 18627 (2013)

    Article  Google Scholar 

  6. L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol. Energy Mater. Sol. C 93, 1875 (2009)

    Article  Google Scholar 

  7. X. Ding, X.G. Xu, Q. Chen, L.M. Peng, Nanotechnology 17, 423 (2006)

    Google Scholar 

  8. X.G. Xu, X. Ding, Q. Chen, L.M. Peng, Phys. Rev. B 73, 165403 (2006)

    Article  Google Scholar 

  9. X.G. Xu, X. Ding, Q. Chen, L.M. Peng, Phys. Rev. B 75, 035423 (2007)

    Article  Google Scholar 

  10. X.F. Chang, Z.H. Liu, C. Li, G.F. Yang, L.P. Jia, Nanoscience 12, 25 (2007)

    Google Scholar 

  11. W.Q. Han, W. Wen, D. Yi, Z.X. Liu, M.M. Maye, L. Lewis, J. Hanson, O. Gang, J. Phys. Chem. C 111, 14339 (2007)

    Article  Google Scholar 

  12. L. Peng, T. Xie, Y. Lu, H. Fan, D. Wang, Phys. Chem. Chem. Phys. 12, 8033 (2010)

    Article  Google Scholar 

  13. T. Liu, H. Zhang, RSC Adv. 3, 16255 (2013)

    Article  Google Scholar 

  14. X. Wang, J.L. Zhao, Y. Kang, L. Li, X. Xu, J. Appl. Electrochem. 44, 1 (2014)

    Article  Google Scholar 

  15. Y. Muramatsu, Q. Jin, M. Fujishima, H. Tada, Appl. Catal. B 120, 74 (2012)

    Article  Google Scholar 

  16. Q. Wua, J. Ouyanga, K. Xiea, L. Suna, M. Wanga, C. Lin, J. Hazard Mater. 199, 410 (2012)

    Article  Google Scholar 

  17. M.M. Momeni, Y. Ghayeb, M. Davarzadeh, J. Electroanal. Chem. 739, 149 (2015)

    Article  Google Scholar 

  18. C.C. Pan, J.C.S. Wu, Mater. Chem. Phys. 100, 102 (2006)

    Article  Google Scholar 

  19. B. Tian, C.Z. Li, J. Zhang, Chem. Eng. J. 191, 402 (2012)

    Article  Google Scholar 

  20. V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, G. Li Puma, J. Mol. Catal. A: Chem. 327, 51 (2010)

    Article  Google Scholar 

  21. F. Cracia, J.P. Holgado, A. Caballero, A.R. Gonzalez-Elipe, J. Phys. Chem. B 108, 17466 (2004)

    Article  Google Scholar 

  22. Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, K. Koumoto, J. Mater. Chem. 13, 608 (2003)

    Article  Google Scholar 

  23. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, Appl. Catal. B 91, 397 (2009)

    Article  Google Scholar 

  24. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, J. Hazard Mater. 177, 781 (2010)

    Article  Google Scholar 

  25. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 42, 319 (2003)

    Article  Google Scholar 

  26. M.M. Momeni, Y. Ghayeb, M. Davarzadeh, J. Mater. Sci.: Mater. Electron. 26, 1560 (2015)

    Google Scholar 

  27. H. Zhu, J. Tao, X. Dong, J. Phys. Chem. C 114, 2873 (2010)

    Article  Google Scholar 

  28. M.M. Momeni, Y. Ghayeb, J. Alloy. Compd. 637, 393 (2015)

    Article  Google Scholar 

  29. D. Li, H. Haneda, N.K. Labhsetwar, S. Hishita, N. Ohashi, Chem. Phys. Lett. 401, 579 (2005)

    Article  Google Scholar 

  30. P. Mallick, C. Rath, R. Biswal, N.C. Mishra, Indian J. Phys. 83(4), 517 (2009)

    Article  Google Scholar 

  31. K. Forghani, L. Schade, U.T. Schwarz, F. Lipski, O. Klein, U. Kaiser, F. Scholz, J. Appl. Phys. 112, 093102 (2012)

    Article  Google Scholar 

  32. J.K. Jeong, J.H. Choi, C.S. Hwang, H.J. Kim, J.H. Lee, J.H. Lee, C.S. Kim, Appl. Phys. Lett. 84, 2575 (2004)

    Article  Google Scholar 

  33. S. Zhang, S. Zhang, F. Peng, H. Zhang, H. Liu, H. Zhao, Electrochem. Commun. 13, 861 (2011)

    Article  Google Scholar 

  34. Y. Liu, X. Zhang, R. Liu, R. Yang, C. Liu, Q. Cai, J. Solid State Chem. 184, 684 (2011)

    Article  Google Scholar 

  35. L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Appl. Catal. A 94, 142 (2010)

    Article  Google Scholar 

  36. S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, J. Yang, H. Zhao, Catal. Commun. 12, 689 (2011)

    Article  Google Scholar 

  37. Y.F. Tu, S.Y. Huang, J.P. Sang, X.W. Zou, Mater. Res. Bull. 45, 224 (2010)

    Article  Google Scholar 

  38. S.K. Mohapatra, K.S. Raja, V.K. Mahajan, M. Misra, J. Phys. Chem. C 112, 11007 (2008)

    Article  Google Scholar 

  39. M.M. Momeni, M.G. Hosseini, J. Mater. Sci.: Mater. Electron. 25, 5027 (2014)

    Google Scholar 

  40. Q. Zhou, Y. Huang, G. Xie, J. Chromatogr. A 1237, 24 (2012)

    Article  Google Scholar 

  41. M.G. Hosseini, M.M. Momeni, Appl. Catal. A 427, 35 (2012)

    Article  Google Scholar 

  42. Y.Y. Song, F.S. Stein, S. Bauer, P. Schmuki, J. Am. Chem. Soc. 131, 4230 (2009)

    Article  Google Scholar 

  43. M.M. Momeni, Y. Ghayeb, F. Mohammadi, J. Mater. Sci.: Mater. Electron. 26, 685 (2015)

    Google Scholar 

  44. T.J. LaTempa, S. Rani, N. Bao, C.A. Grimes, Nanoscale 4, 2245 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohsen Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M.M., Ghayeb, Y. Synthesis and characterization of iron-doped titania nanohoneycomb and nanoporous semiconductors by electrochemical anodizing method as good visible light active photocatalysts. J Mater Sci: Mater Electron 26, 5509–5517 (2015). https://doi.org/10.1007/s10854-015-3108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3108-y

Keywords

Navigation