Skip to main content

Advertisement

Log in

Influences of CuAl2O4 doping on the dielectric properties of CaCu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influences of CuAl2O4 doping on the microstructure, dielectric properties and relaxations of CaCu3Ti4O12 ceramics have been studied in the paper. The dielectric properties were measured under the frequency from 10−1 to 107 Hz and the temperature from 153 to 453 K. An enhanced breakdown electric field, associated with lower dielectric loss at low frequency has been obtained via adding CuAl2O4. Three Dielectric relaxation processes are found in the frequency dependence of modulus planes. The activation energy of 0.10 eV, barely varies with CuAl2O4 addition, and is attributed to the intrinsic electronic relaxation. The energy level decreasing from 0.50 to 0.22 eV with the addition of CuAl2O4 may be caused by multi impurities and boundaries. The energy of conduction process varies from 0.66 to 0.86 eV, which showed elevated energy barrier for hopping of charge carriers and can be attributed to the blocking effect of more grain boundaries. The barriers at grain boundary of the samples collapsed with excessive content of CuAl2O4, which led to the absence of non-ohmic properties and high dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Subramanian, L. Dong, N. Duan, B.A. Reisner, A.W. Sleight, Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  Google Scholar 

  3. M.H. Cohen, J.B. Neaton, L.X. He, D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003)

    Article  Google Scholar 

  4. S.Y. Chung, I.D. Kim, S.J.L. Kang, Nature Mater. 3, 774 (2004)

    Article  Google Scholar 

  5. Y.H. Lin, J.N. Cai, M. Li, C.W. Nan, J.L. He, Appl. Phys. Lett. 88, 172902 (2006)

    Article  Google Scholar 

  6. V.P.B. Marques, P.R. Bueno, A.Z. Simões, M. Cilense, J.A. Varela, E. Longo, E.R. Leite, Solid State Chem. 138, 1 (2006)

    Article  Google Scholar 

  7. Y. Liu, R.L. Withers, X.Y. Wei, Phys. Rev. B 72, 134104 (2005)

    Article  Google Scholar 

  8. S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, J. Appl. Phys. 103, 084107 (2008)

    Article  Google Scholar 

  9. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)

    Article  Google Scholar 

  10. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  11. X.J. Luo, C.P. Yang, X.P. Song, S. Tang, H. Xiao, K.H.O. Bärner, J. Am. Ceram. Soc. 96, 253 (2013)

    Article  Google Scholar 

  12. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  13. W.X. Yuan, S.K. Hark, J. Eur. Ceram. Soc. 32, 465 (2012)

    Article  Google Scholar 

  14. W.X. Yuan, Z.J. Li, C.D. Wang, J. Mater. Sci. Mater. Electron. 23, 1552 (2012)

    Article  Google Scholar 

  15. J.Y. Li, R. Jia, X. Tang, X.T. Zhao, S.T. Li, J. Phys. D Appl. Phys. 46, 325304 (2013)

    Article  Google Scholar 

  16. H. Yu, H. Liu, H. Hao, D. Luo, M. Cao, Mater. Lett. 62, 1353 (2008)

    Article  Google Scholar 

  17. J.C. Yuan, Y.H. Lin, H.F. Lu, B. Cheng, C.W. Nan, J. Am. Ceram. Soc. 94, 1966 (2011)

    Article  Google Scholar 

  18. W. Kobayashi, I. Terasaki, Appl. Phys. Lett. 87, 032902 (2005)

    Article  Google Scholar 

  19. A.G. Pinheiro, F.M.M. Pereira, M.R.P. Santos, H.H.B. Rocha, A.S.B. Sombra, J. Mater. Sci. 42, 2112 (2007)

    Article  Google Scholar 

  20. L. Zhang, Z.J. Tang, Phys. Rev. B 70, 174306 (2004)

    Article  Google Scholar 

  21. A. Tselve, C.M. Brooks, S.M. Anlage, H.M. Zheng, S.R. Lourdes, R. Ramesh, M.A. Subramanian, Phys. Rev. B 70, 144101 (2004)

    Article  Google Scholar 

  22. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, M.A. Subramanian, A.P. Ramirez, Phys. Rev. B 67, 92106 (2003)

    Article  Google Scholar 

  23. T.T. Fang, L.T. Mei, H.F. Ho, Acta Mater. 54, 2867 (2006)

    Article  Google Scholar 

  24. B. Shri Prakash, K.B.R. Varma, J. Mater. Sci. 42, 7467 (2007)

    Article  Google Scholar 

  25. R. Jia, X.T. Zhao, J.Y. Li, X. Tang, Mater. Sci. Eng., B 185, 79 (2014)

    Article  Google Scholar 

  26. K.T. Jacob, C.B. Alcock, J. Am. Ceram. Soc. 58, 192 (1975)

    Article  Google Scholar 

  27. S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, J. Appl. Phys. 99, 084106 (2006)

    Article  Google Scholar 

  28. J.Y. Li, X.T. Zhao, F. Gu, S.T. Li, Appl. Phys. Lett. 100, 202905 (2012)

    Article  Google Scholar 

  29. J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, J. Appl. Phys. 108, 104104 (2010)

    Article  Google Scholar 

  30. Z.L. Wang, S.T. Li, Zinc oxide varistor ceramics manufacturing and application (Science Press, Beijing, 2009), pp. 31–35

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 51177121) and (No. 51221005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianying Li or Ran Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hou, L., Jia, R. et al. Influences of CuAl2O4 doping on the dielectric properties of CaCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 26, 5085–5091 (2015). https://doi.org/10.1007/s10854-015-3033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3033-0

Keywords

Navigation