Skip to main content
Log in

Green synthesis of TiO2 and its photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anatase titanium dioxide nanoparticles were prepared from titanium oxysulphate (TiOSO4) as a precursor and the base polymer Polyvinyl Pyrrolidone is used as a capping agent. TiO2 nanoparticles were characterized by XRD, SEM, TEM, EDS, FT-IR, DLS, UV–Vis. Diffuse reflectance spectrophotometer. From XRD analysis it is seen that obtained diffraction peaks are broad which indicating that crystallite size is very small. Scanning Electron Micrograph (SEM) revealed that TiO2 nanoparticles has diameter of 10 nm calcined at 400 °C. Photocatalytic activity was checked by employing the Methyl Orange as a model pollutant under UV-light (365 nm) which shows 94 % photo-degradation in 150 min. The novelty of present approach is the large scale production of polymer capped TiO2 nanocrystals by using sol–gel process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rew. 95, 69 (1995)

    Article  Google Scholar 

  2. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rew. m 95, 735 (1995)

    Article  Google Scholar 

  3. S. Sakthivel, M.C. Hildago, D.C. Bahnemann, S.U. Geissen, V. Murugesan, A. Vogelpohl, Appl. Catal. B Environ. 63, 31 (2006)

    Article  Google Scholar 

  4. P. Zeman, S. Takabayashi, Thin Solid Films 433, 57 (2003)

    Article  Google Scholar 

  5. D.P. Macwan, P.N. Dave, S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011)

    Article  Google Scholar 

  6. M.A. Behnajady, H. Eskandarloo, N. Modirshahla, M. Shokri, Photochem. Photobiol. 87, 1002 (2011)

    Article  Google Scholar 

  7. K.H. Lee, S.-W. Song, ACS Appl. Mater. Interfaces. 3, 3697 (2011)

    Article  Google Scholar 

  8. K.K. Akuraj, A. Vital, G. Fortunato, R. Hany, F. Nueesch, T. Graule, Solid State Sci. 9, 247 (2007)

    Article  Google Scholar 

  9. C. Chaisuk, A. Wehatoranawee, S. Preampiyawat, S. Netiphat, A. Shotipruk, O. Mekasuwandumrong, Ceram. Int. 37, 1459 (2011)

    Article  Google Scholar 

  10. H.M. Yang, K. Zhang, R.R. Shi, X.W. Li, X.D. Dang, Y.M. Yu, J. Alloy. Compd. 413, 302 (2006)

    Article  Google Scholar 

  11. T. Ginsbers, M. Modigell, W. Wilsmann, Chem. Eng. Res. Des. 89, 990 (2011)

    Article  Google Scholar 

  12. A. Di Paola, M. Bellardita, L. Palmisano, R. Amadelli, L. Samiolo, Catal. Lett. 143, 844 (2013)

    Article  Google Scholar 

  13. N.T. Nolan, M.K. Seery, S.C. Pillai, J. Phys. Chem. C 113, 16151 (2009)

    Article  Google Scholar 

  14. N. Wetchakun, S. Phanichphant, Curr. Appl. Phys. 8, 343 (2008)

    Article  Google Scholar 

  15. S. Ngamta, N. Boonprakob, N. Wetchakun, K. Ounnunkad, S. Phanichphant, B. Inceesungvorn, Mater. Sci. Res. Cent. Thail. 105, 76 (2013)

    Google Scholar 

  16. S. Mahshid, M. Askari, M.S. Ghamsari, N. Afshar, S. Lahuti. J. Alloys Compd. 478, 586 (2009)

  17. R. Vijayalakshmi, V. Rajendran, Arch appl. sci. Res. 4, 1183 (2012)

    Google Scholar 

  18. M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Ceram. Int. 40(4), 5489 (2014)

    Article  Google Scholar 

  19. H. Ogawa, A. Abe, J. Electrochem. Soc. 128, 685 (1981)

    Article  Google Scholar 

  20. L.C. Yan, J.B. Wang, Y.Q. Wang, Chin. Phys. B 21, 9 (2012)

    Google Scholar 

  21. B.R. Li, Q. Li, W. Zhang, J.Q. Li, Y. Hao, Dev. Chem. Ind. 39, 3 (2010)

    Google Scholar 

  22. H.S. Chen, R.V. Kumar, RSC Adv. 2, 2294 (2012)

    Article  Google Scholar 

  23. L.Y. Zhang, Y. CaO, Z.X. Liu, X.L. Yu, Z.F. Lu, J. Rare metals 35, 504 (2001)

    Google Scholar 

  24. A.S. Stanislav, T. Yoed, J. Mol. Catal. A 314, 55 (2009)

    Article  Google Scholar 

  25. B.S. Shirke, P.V. Korake, P.P. Hankare, S.R. Bamane, K.M. Garadkar, J. Mat. Sci. Mater. Electron 22, 821 (2011)

    Article  Google Scholar 

  26. D. Wang, L. Xiao, Q. Lau, X. Li, J. An, Y. Duan, J. Hazard. Mater. 192, 150 (2001)

    Google Scholar 

  27. T.M. Breeault, B.M. Bartlett, J. Phys. Chem. 116, 5986 (2012)

    Google Scholar 

  28. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadkar, Spectrochem. Acta A. 133, 669 (2014)

    Article  Google Scholar 

  29. P.V. Korake, A.N. Kadam, K.M. Garadkar, J. Rare Earth 32, 306 (2014)

    Article  Google Scholar 

  30. G. Liu, H.G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G.Q. Lu, H.M. Cheng, J. Phys. Chem. 113, 21784 (2009)

    Google Scholar 

  31. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Mater. Chem. Phy. 116, 376 (2009)

    Article  Google Scholar 

  32. Y. Gao, Y. Masuda, Z. Peng, T. Yonazawa, K. Kaumoto, J. Mat. Chem. 13, 608 (2007)

    Article  Google Scholar 

  33. J. Kunze, A. Ghicov, H. Hildebrand, J.M. Macok, L. Traveira, P. Schmuki, Z. Phys. Chem. 219, 1561 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (KMG) thankful to DST for financial support under major research project (SR/S1/PC/0041/2010). Authors are also thankful to Director SAIF, NEHU Shillong for providing TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Garadkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khade, G.V., Suwarnkar, M.B., Gavade, N.L. et al. Green synthesis of TiO2 and its photocatalytic activity. J Mater Sci: Mater Electron 26, 3309–3315 (2015). https://doi.org/10.1007/s10854-015-2832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2832-7

Keywords

Navigation