Skip to main content
Log in

Thermoelectric behavior of poly(3,4-ethylenedioxythiophene)/graphene composites depending on benzenesulfonate derivatives doped in polymer chains

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferric benzenesulfonate (Fe(Bzs)3), ferric para-methylbenzenesulfonate (Fe(p-MeBzs)3), and ferric para-ethylbenzenesulfonate (Fe(p-EtBzs)3) were synthesized and used as oxidants. Thermoelectric composites were fabricated from synthesized benzenesulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-Bzs), para-methylbenzenesulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-p-MeBzs), and para-ethylbenzenesulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-p-EtBzs) matrices with varied contents of conductive graphene filler. Dodecylbenzenesulfonic acid was used as both a surfactant to form graphene micelles and a doping agent to coat a PEDOT layer on the graphene surface. The PEDOT-Bzs produced the highest electrical conductivity among the PEDOT materials, exhibiting higher doping level of the polymer main chain than the PEDOT-p-MeBzs and PEDOT-p-EtBzs. The electrical conductivity and the Seebeck coefficient of the composite increased significantly with increasing graphene content through the extended chain conformation, which reduces the charge carrier hopping barrier to increase carrier mobility. The maximum figure of merit (ZT) value of the PEDOT-Bzs composites with 75 wt% graphene filler content was estimated at 0.015 at room temperature, higher than that of PEDOT-p-MeBzs (0.013) and PEDOT-p-EtBzs (0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. O. Bubnova, X. Crispin, Energy Environ. Sci. 5, 9345–9362 (2012)

    Article  Google Scholar 

  2. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634–638 (2008)

    Article  Google Scholar 

  3. J. Kang, J.W. Roh, W. Shim, J. Ham, J.S. Noh, W. Lee, Adv. Mater. 23, 3414–3419 (2011)

    Article  Google Scholar 

  4. G.H. Kim, D.H. Hwang, S.I. Woo, Phys. Chem. Chem. Phys. 14, 3530–3536 (2012)

    Article  Google Scholar 

  5. Q. Wang, Q. Yao, J. Chang, L. Chen, J. Mater. Chem. 22, 17612–17618 (2012)

    Article  Google Scholar 

  6. Y. Du, K.F. Cai, S.Z. Shen, W.D. Yang, P.S. Casey, J. Mater. Sci. Mater. Electron. 24, 1702–1706 (2013)

    Article  Google Scholar 

  7. F.X. Jiang, J.K. Xu, B.Y. Lu, Y. Xie, R.J. Huang, L.F. Li, Chin. Phys. Lett. 25, 2202–2205 (2008)

    Article  Google Scholar 

  8. N. Mateeva, H. Niculescu, J. Schlenoff, L.R. Testardi, J. Appl. Phys. 83, 3111–3117 (1998)

    Article  Google Scholar 

  9. J. Wang, K. Cai, S. Shen, J. Yin, Synth. Met. 195, 132–136 (2014)

    Article  Google Scholar 

  10. H. Park, S.H. Lee, F.S. Kim, H.H. Choi, I.W. Cheong, J.H. Kim, J. Mater. Chem. A 2, 6532–6539 (2014)

    Article  Google Scholar 

  11. L.A.A. Pettersson, T. Johansson, F. Carlsson, H. Arwin, O. Inganäs, Synth. Met. 101, 198–199 (1999)

    Article  Google Scholar 

  12. D.K. Taggart, Y. Yang, S.C. Kung, T.M. McIntire, R.M. Penner, Nano Lett. 11, 125–131 (2010)

    Article  Google Scholar 

  13. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat. Mater. 10, 429–433 (2011)

    Article  Google Scholar 

  14. M. Kim, Y. Hwang, J. Kim, Chem. Eng. J. 230, 482–490 (2013)

    Article  Google Scholar 

  15. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. 46, 1112–1114 (2010)

    Article  Google Scholar 

  16. H. Szymanski, IR: Theory and Practice of Infrared Spectroscopy (Plenum Press, New York, 1964)

    Book  Google Scholar 

  17. K.I. Seo, I.J. Chung, Polymer 41, 4491–4499 (2000)

    Article  Google Scholar 

  18. M.G. Han, S.H. Foulger, Adv. Mater. 16, 231–234 (2004)

    Article  Google Scholar 

  19. G. Zotti, S. Zecchin, G. Schiavon, F. Louwet, L. Groenendaal, X. Crispin, W. Osikowicz, W. Salaneck, M. Fahlman, Macromolecules 36, 3337–3344 (2003)

    Article  Google Scholar 

  20. A. Dilks, in Electron Spectroscopy: Theory, Techniques, and Applications, ed. by C.R. Brundle, A.D. Baker (Academic Press, London, 1981)

    Google Scholar 

  21. L. Pavia, V. Kriz, Introduction to Spectroscopy (Brooks/Cole, Belmont, 2009)

    Google Scholar 

  22. T. Wang, Y. Qi, J. Xu, X. Hu, P. Chen, Appl. Surf. Sci. 250, 188–194 (2005)

    Article  Google Scholar 

  23. T.Y. Kim, C.M. Park, J.E. Kim, K.S. Suh, Synth. Met. 149, 169–174 (2005)

    Article  Google Scholar 

  24. J. McMurry, Organic Chemistry (Thomson, Belmont, 2008)

    Google Scholar 

  25. Q. Yao, L. Chen, W. Zhang, S. Liufu, X. Chen, ACS Nano 4, 2445–2451 (2010)

    Article  Google Scholar 

  26. Y. Hiroshige, M. Ookawa, N. Toshima, Synth. Met. 156, 1341–1347 (2006)

    Article  Google Scholar 

  27. K. Xu, G. Chen, D. Qiu, J. Mater. Chem. A 1, 12395–12399 (2013)

    Article  Google Scholar 

  28. Y. Du, K.F. Cai, S. Chen, P. Cizek, T. Lin, ACS Appl. Mater. Interfaces 6, 5735–5743 (2014)

    Article  Google Scholar 

  29. C. Meng, C. Liu, S. Fan, Adv. Mater. 22, 535–539 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work (2014R1A2A1A11049625) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and the Chung-Ang University research grants in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooheon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, H., Kim, M. & Kim, J. Thermoelectric behavior of poly(3,4-ethylenedioxythiophene)/graphene composites depending on benzenesulfonate derivatives doped in polymer chains. J Mater Sci: Mater Electron 26, 2544–2554 (2015). https://doi.org/10.1007/s10854-015-2721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2721-0

Keywords

Navigation