Skip to main content
Log in

Dark current mechanisms in amorphous selenium-based photoconductive detectors: an overview and re-examination

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The transient and steady-state dark current behaviors in various amorphous selenium (a-Se) detectors are analyzed by developing mathematical models considering all possible mechanisms (e.g., carrier depletion, thermal generation, and carrier injection from electrodes) and charge carrier transport properties of a-Se. The theoretical models are validated by comparing them with recently published measured transient and steady-state dark currents in various a-Se detectors. The fittings of the models with the experimental results reveal various important material and device properties such as the optimum trap depth and concentrations in the blocking layers for faster stabilization and lower dark current, and the effective barrier height between the metal/a-Se contacts. The thermal generation current is significantly higher in avalanche detectors (at extremely high fields) than that in conventional detectors. The effective blocking layers for both holes and electrons are necessary for the minimum level of the dark current. The minimum dark current is determined by the thermal generation current. The thermal generation current can be lowered by reducing the mid gap defect states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.O. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112 (2011)

    Article  Google Scholar 

  2. I. Saito, W. Miyazaki, M. Onishi, Y. Kudo, T. Masuzawa, T. Yamada, A. Koh, D. Chua, K. Soga, M. Overend, M. Aono, G.A.J. Amaratunga, K. Okano, Appl. Phys. Lett. 98, 152102 (2011)

    Article  Google Scholar 

  3. A. Reznik, W. Zhao, Y. Ohkawa, K. Tanioka, J.A. Rowlands, J. Mater. Sci. Mater. Electron. 20, S63 (2009)

    Article  Google Scholar 

  4. S.A. Mahmood, M.Z. Kabir, O. Tousignant, J. Greenspan, IEEE Trans. Nucl. Sci. 59, 597 (2012)

    Article  Google Scholar 

  5. S.O. Kasap, J.A. Rowlands, J. Mater. Sci. Mater. Electron. 11, 179 (2000)

    Article  Google Scholar 

  6. V.I. Mikla, V.V. Mikla, J. Mater. Sci. Mater. Electron. 20, 1095 (2009)

    Article  Google Scholar 

  7. G.S. Belev, B. Fogal, K.V. Koughia, R.E. Johanson, S.O. Kasap, J. Mater. Sci. Mater. Electron. 14, 841 (2003)

    Article  Google Scholar 

  8. M.Z. Kabir, S.O. Kasap, J.A. Rowlands, in Photoconductors for X-ray Image Detectors, eds. by Kasap, Capper. Springer Handbook of Electronic and Photonic Materials, chap. 48 (Springer, 2006)

  9. S.O. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Phys. Status. Solidi. B 246, 1794 (2009)

    Article  Google Scholar 

  10. S.O. Kasap, J.A. Rowlands, IET Circuits Devices Syst. 149, 85 (2002)

    Article  Google Scholar 

  11. J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, S.O. Kasap, J. Appl. Phys. 112, 014502 (2012)

    Article  Google Scholar 

  12. M.Z. Kabir, S.O. Kasap, J. Vac. Sci. Technol. A 20, 1082 (2002)

    Article  Google Scholar 

  13. X. Zhu, H. Sun, D. Yang, J. Yang, X. Li, X. Gao, J. Mater. Sci. Mater. Electron. 25, 3337 (2014)

    Article  Google Scholar 

  14. K. Jandieri, O. Rubel, S.D. Baranovskii, A. Reznik, J.A. Rowlands, S.O. Kasap, J. Mater. Sci. Mater. Electron. 20, S221 (2009)

    Article  Google Scholar 

  15. K. Kikuchi, Y. Ohkawa, K. Miyakawa, T. Matsubara, K. Tanioka, M. Kubota, N. Egami, Phys. Status. Solidi. C 8, 2800 (2011)

    Article  Google Scholar 

  16. M. Brinza, J. Willekens, M.L. Benkhedir, E.V. Emelianova, G.J. Adriaenssens, J. Mater. Sci. Mater. Electron. 16, 703 (2005)

    Article  Google Scholar 

  17. S.O. Kasap, B. Polischuk, D. Dodds, Rev. Sci. Instrum. 61, 2080 (1990)

    Article  Google Scholar 

  18. S.A. Mahmood, M.Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, P. Botka, Appl. Phys. Lett. 92, 223506 (2008)

    Article  Google Scholar 

  19. M. Abkowitz, Phil. Mag. Lett. 58, 53 (1988)

    Article  Google Scholar 

  20. S.A. Mahmood, M.Z. Kabir, Curr. Appl. Phys. 9, 1393 (2009)

    Article  Google Scholar 

  21. G.A. Marlor, Phys. Rev. 159, 540 (1967)

    Article  Google Scholar 

  22. Z. He, Nucl. Instrum. Methods A 463, 250 (2001)

    Article  Google Scholar 

  23. K.C. Kao, W. Hwang, Electrical Transport in Solids (Pergamon, England, 1981), p. 333

    Google Scholar 

  24. R.A. Street, Phil. Mag. 63, 1343 (1991)

    Article  Google Scholar 

  25. M.Z. Kabir, Nucl. Instrum. Methods A 736, 156 (2014)

    Article  Google Scholar 

  26. R.A. Street, Appl. Phys. Lett. 57, 1334 (1990)

    Article  Google Scholar 

  27. S.A. Mahmood, M.Z. Kabir, J. Vac. Sci. Technol. A 29, 031603 (2011)

    Article  Google Scholar 

  28. G. Vincent, A. Chantre, D. Bois, J. Appl. Phys. 50, 5484 (1978)

    Article  Google Scholar 

  29. J. Frey, An experimental and theoretical study of the dark current and X-ray sensitivity of amorphous selenium x-ray photoconductors, PhD thesis, University of Saskatchewan (2012)

  30. M.Z. Kabir, S.-A. Imam, Can. J. Phys. 92, 641 (2014)

    Article  Google Scholar 

  31. G.E. Frank-Kamenetskaya, M.D. Vorontsov, I.P. Kalinkin, Russ. Phys. J. 33, 952 (1990)

    Google Scholar 

  32. H.-Z. Song, G.J. Adriaenssens, E.V. Emelianova, V.I. Arkhipov, Phys. Rev. B 59, 10607 (1999)

    Article  Google Scholar 

  33. K. Koughia, Z. Shakoor, S.O. Kasap, J.M. Marshall, J. Appl. Phys. 97, 033706 (2005)

    Article  Google Scholar 

  34. G. Belev, S.O. Kasap, J. Optoelectron. Adv. Mater. 11, 1053 (2009)

    Google Scholar 

  35. S. Abbaszadeh, A. Tari, W.S. Wong, K.S. Karim, IEEE Trans. Electron. Devices 61, 3355 (2014)

    Article  Google Scholar 

  36. S. Abbaszadeh, N. Allec, S. Ghanbarzadeh, U. Shafique, K.S. Karim, IEEE Trans. Electron. Devices 59, 2403 (2012)

    Article  Google Scholar 

  37. O. Bubon, G. DeCrescenzo, J.A. Raowlands, A. Reznik, J. Non-Cryst. Solids 358, 2431 (2012)

    Article  Google Scholar 

  38. E. Rosencher, V. Mosser, G. Vincent, Phys. Rev. B 29, 1135 (1984)

    Article  Google Scholar 

  39. M.Z. Kabir, J. Appl. Phys. 104, 074506 (2008)

    Article  Google Scholar 

  40. M.Z. Kabir, S.A. Imam, Appl. Phys. Lett. 102, 153515 (2013)

    Article  Google Scholar 

  41. G. Juska, K. Arlauskas, Phys. Status. Solidi. A 59, 389 (1980)

    Article  Google Scholar 

  42. A.K. Bhatnagar, K.V. Reddy, V. Srivastava, J. Phys. D Appl. Phys. 18, L149 (1985)

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support by NSERC Discovery Grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kabir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.Z. Dark current mechanisms in amorphous selenium-based photoconductive detectors: an overview and re-examination. J Mater Sci: Mater Electron 26, 4659–4667 (2015). https://doi.org/10.1007/s10854-015-2675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2675-2

Keywords

Navigation