Skip to main content
Log in

Synthesis, dielectric properties of Bi2/3Cu3Ti4O12 ceramics by the sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2/3Cu3Ti4O12 ceramics were synthesized by the sol–gel method. The optimum parameters for the synthesis of precursor powders were as follows: the Ti concentration was 0.62 mol/L, the aging time of the sol was 16 h and the reaction temperature was 40 °C. When calcined at 800 °C and sintered at 1,000 °C, Bi2/3Cu3Ti4O12 ceramics with the highest density and fine-grained microstructure were obtained. The resultant ceramics showed outstanding dielectric properties with a dielectric constant (ε′) of ~1.2 × 104 measured at 1 kHz. The dielectric constant was much higher than that of the ceramics with same composition prepared by the solid-state reaction (~0.30 × 104 at 1 kHz). A unique phenomenon was observed in the temperature dependence of dielectric constant. Dielectric relaxation I occurred at ~200 °C was due to the Maxwell–Wagner relaxation. Whereas an additional dielectric relaxation II was observed at ~300 °C only for the sample prepared by the sol–gel method, which was ascribed to the distribution state transition for oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

    Article  Google Scholar 

  3. J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)

    Article  Google Scholar 

  4. M.C. Ferrarelli, T.B. Adams, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 89, 212904 (2006)

    Article  Google Scholar 

  5. R.Q. Zuo, L.X. Feng, Y.Y. Yan, B. Chen, G.H. Cao, Solid State Commun. 138, 91 (2006)

    Article  Google Scholar 

  6. D. Szwagierczak, J. Electroceram. 23, 56 (2008)

    Article  Google Scholar 

  7. W.T. Hao, J.L. Zhang, Y.Q. Tan, W.B. Su, J. Am. Ceram. Soc. 92, 2937 (2009)

    Article  Google Scholar 

  8. J.J. Liu, C.G. Duan, W.G. Yin, W. Mei, R. Smith, J. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  9. L.J. Liu, H.Q. Fan, P.Y. Fang, X.L. Chen, Mater. Res. Bull. 43, 1800 (2008)

    Article  Google Scholar 

  10. B. Xu, J. Zhang, Z. Tian, S.L. Yuan, Mater. Lett. 75, 87 (2012)

    Article  Google Scholar 

  11. Z.Q. Liu, G.S. Jiao, X.L. Chao, Z.P. Yang, Mater. Res. Bull. 48, 4877 (2013)

    Article  Google Scholar 

  12. W.Q. Ni, X.H. Zheng, J.C. Yu, J. Mater. Sci. 42, 1037 (2007)

    Article  Google Scholar 

  13. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  14. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)

    Article  Google Scholar 

  15. B.A. Bender, M.J. Pan, Mater. Sci. Eng. B 117, 339 (2005)

    Article  Google Scholar 

  16. J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Appl. Phys. Lett. 87, 142901 (2005)

    Article  Google Scholar 

  17. S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, J. Appl. Phys. 99, 084106 (2006)

    Article  Google Scholar 

  18. P.B. Shri, K.B.R. Varma, Phys. B 403, 2246 (2008)

    Article  Google Scholar 

  19. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  20. J. Li, A.W. Sleight, M.A. Subramanian, Solid State Commun. 135, 260 (2005)

    Article  Google Scholar 

  21. Z.P. Yang, L.J. Zhang, X.L. Chao, L.R. Xiong, J. Liu, J. Alloy. Compd. 509, 8716 (2011)

    Article  Google Scholar 

  22. H.M. Ren, P.F. Liang, Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010)

    Article  Google Scholar 

  23. P.F. Liang, Y.Y. Li, F.C. Li, X.L. Chao, Z.P. Yang, Mater. Res. Bull. 52, 42 (2014)

    Article  Google Scholar 

  24. B.S. Prakash, K.B.R. Varma, J. Phys. Chem. Solids 68, 490 (2007)

    Article  Google Scholar 

  25. L.N. Liu, C.C. Wang, C.M. Lei, T. Li, G.J. Wang, X.H. Sun, J. Wang, S.G. Huang, Y.D. Li, H. Wang, Appl. Phys. Lett. 102, 112907 (2013)

    Article  Google Scholar 

  26. C.C. Wang, C.M. Lei, G.J. Wang, X.H. Sun, T. Li, S.G. Huang, H. Wang, Y.D. Li, J. Appl. Phys. 113, 094103 (2013)

    Article  Google Scholar 

  27. Y.H. Lin, J.N. Cai, M. Li, C.W. Nan, J.L. He, J. Appl. Phys. 103, 074111 (2008)

    Article  Google Scholar 

  28. T. Adams, D. Sinclair, A. West, Phys. Rev. B 73, 094124 (2006)

  29. B.S. Prakash, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 17, 899 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (NSFC) (Grant Nos. 51172136 and 51107077) and the Fundamental Research Funds for the Central Universities (Program Nos. GK201101003, GK201101004, GK201301002, GK201305013 and GK201403006) and Science and Technology Program of Shaanxi Province and Xi’an City (Grant Nos. 2013K09-26 and CXY1342(4)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zupei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liang, P., Yang, L. et al. Synthesis, dielectric properties of Bi2/3Cu3Ti4O12 ceramics by the sol–gel method. J Mater Sci: Mater Electron 26, 1959–1968 (2015). https://doi.org/10.1007/s10854-014-2635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2635-2

Keywords

Navigation