Skip to main content
Log in

Effect of substrate temperature on structural and optical properties of nickel tungsten oxide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we present the substrate temperature induced change in the structural, optical, vibrational and luminescence properties of mixed NiO:WO3 (95:5) thin films deposited on glass substrates by rf magnetron sputtering technique. X-ray diffraction analysis revealed the onset of crystallization of the films occurred at 300 °C. The average optical transmittance of the films varied between 91 and 97 % in the visible region. The refractive index and extinction coefficient of films are found to decrease with increasing substrate temperature. It was observed that the dispersion data obeyed the single oscillator of the Wemple-DiDomenico model, from which the dielectric constants, ratio between free carrier density and free carrier effective mass, plasma frequency, oscillator energy, oscillator strength, and dispersion energy parameters of NiO:WO3 films were calculated and reported for the first time due to variation in substrate temperature during deposition by rf magnetron sputtering. The micro-Raman result shows two broad peaks corresponding to one-phonon LO mode at 570 cm−1 and two-phonon LO mode at 1,100 cm−1 due to the vibrations of Ni–O bonds and the peak found at 870 cm−1 belongs to the W–O mode. Room temperature photoluminescence (RTPL) study exhibits two characteristic emission peaks at 3.32 eV (374 nm) and 2.93 eV (423 nm), which corresponding to the transition of 3d8 Ni2+ ions. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B. Subramanian, M. Mohamed Ibrahim, V. Senthilkumar, K.R. Murali, V.S. Vidhya, C. Sanjeeviraja, M. Jayachandran, Optoelectronic and electrochemical properties of nickel oxide (NiO) films deposited by DC reactive magnetron sputtering. Phys. B 403, 4104–4110 (2008)

    Article  Google Scholar 

  2. M.M. Hasan, A.S.M.A. Haseeb, H.H. Masjuki, Structural and mechanical properties of nano structured tungsten oxide thin films. Sur. Eng. 28, 778–785 (2012)

    Article  Google Scholar 

  3. M. Yin, H.P. Li, S.H. Tang, W. Ji, Determination of nonlinear absorption and refraction by single Z-scan method. Appl. Phys. B: Lasers Opt. 70, 587–591 (2000)

    Article  Google Scholar 

  4. P.K. Shen, J. Syed-Bokhari, A.C.C. Tseung, The performance of electrochromic tungsten trioxide films doped with cobalt or nickel. J. Electrochem. Soc. 138, 2778–2783 (1991)

    Article  Google Scholar 

  5. S.V. Green, E. Pehlivan, C.G. Granqvist, G.A. Niklasson, Electrochromism in sputter deposited nickel-containing tungsten oxide films. Sol. Energy Mater. Sol. Cells 99, 339–344 (2012)

    Article  Google Scholar 

  6. S.H. Lee, S.K. Joo, Electrochromic behavior of Ni-W oxide electrodes. Sol. Energy Mater. Sol. Cells 39, 155–166 (1995)

    Article  Google Scholar 

  7. S.-H. Lee, H.M. Cheong, N.-G. Park, C.E. Tracy, A. Mascarenhas, D.K. Benson, S.K. Deb, Raman spectroscopic studies of Ni-W oxide thin films. Solid State Ionics 140, 135–139 (2001)

    Article  Google Scholar 

  8. B. Sasi, K.G. Gopchandran, P.K. Manoj, P. Koshy, P.P. Rao, V.K. Vaidyan, Preparation of transparent and semiconducting NiO films. Vacuum 68, 149–154 (2002)

    Article  Google Scholar 

  9. T. Seike, J. Nagai, Electrochromism of 3d transition metal oxides. Sol. Energy Mater. 22, 107–117 (1991)

    Article  Google Scholar 

  10. P.K. Pandey, N.S. Bhave, R.B. Kharat, Preparation and characterization of nanostructured NiO thin films by reactive-pulsed laser ablation technique. Electrochim. Acta 51, 4659–4664 (2006)

    Article  Google Scholar 

  11. B. Sasi, K.G. Gopchandran, Preparation and characterization of nanostructured NiO thin films by reactive-pulsed laser ablation technique Sol. Energy Mater. Sol. Cells 91, 1505–1509 (2007)

    Article  Google Scholar 

  12. S.V. Green, A. Kuzmin, J. Purans, C.G. Granqvist, G.A. Niklasson, Structure and composition of sputter-deposited nickel-tungsten oxide films. Thin Solid Films 519, 2062–2066 (2011)

    Article  Google Scholar 

  13. H.L. Chen, Y.M. Lu, W.S. Hwang, Thickness dependence of electrical and optical properties of sputtered Nickel oxide films. Thin Solid Films 514, 361–365 (2006)

    Article  Google Scholar 

  14. A. Mendoza-Galvan, M.A. Vidales-Hurtado, A.M. Lopez-Beltran, Comparison of the optical and structural properties of nickel oxide-based thin films obtained by chemical bath and sputtering. Thin Solid Films 517, 3115–3120 (2009)

    Article  Google Scholar 

  15. M.C. Rao, O.M. Hussain, Optical properties of vacuum evaporated WO3 thin films. Res. J. Chem. Sci. 1, 76–80 (2011)

    Google Scholar 

  16. H.R. Fallah, M. Ghasemi, A. Hassanzadeh, Influence of heat treatment on structural, electrical, impedance and optical properties of nanocrystalline ITO films grown on glass at room temperature prepared by electron beam evaporation. Physica E 39, 69–74 (2007)

    Article  Google Scholar 

  17. J.I. Pankove, Optical Process in Semiconductors (Prentice Hall, Inc., New Jersey, 1971), pp. 34

  18. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)

    Article  Google Scholar 

  19. T.S. Moss, The interpretation of the properties of Indium antimonide. Proc. Phys. Soc. London, Sect. B 67, 775–782 (1954)

    Article  Google Scholar 

  20. M.A. Hassan, C.A. Hogarth, A study of the structural, electrical and optical properties of copper tellurium oxide glasses. J. Mater. Sci. 23, 2500–2504 (1988)

    Article  Google Scholar 

  21. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  22. Dirk Poelman, Philippe Frederic Smet, methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J. Phys. D Appl. Phys. 36, 1850–1857 (2003)

    Article  Google Scholar 

  23. N.A. Subrahamanyam, A Textbook of Optics, 9th edn. (Brj Laboratory, India, 1977)

    Google Scholar 

  24. A.A. Al-Ghamdi, W.E. Mahmoud, S.J. Yaghmour, F.M. AlMarzouki, Structure and optical properties of nanocrystalline NiO thin film synthesized by sol-gel spin-coating method. J. Alloys Compd. 486, 9–13 (2009)

    Article  Google Scholar 

  25. J. Singh, Optical Properties of Condensed Matter and Applications (John Wiley & Sons, Chichester, 2006)

  26. P.J.L. Herve, L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77, 5476–5477 (1995)

    Article  Google Scholar 

  27. W.L. Bragg, A.B. Pippard, The form birefringence of macromolecules. Acta Crystallogr. 6, 865–867 (1953)

    Article  Google Scholar 

  28. H.A. Macleod, Structure related optical properties of thin films. J. Vac. Sci. Technol., A 4, 418–422 (1986)

    Article  Google Scholar 

  29. Optical Properties of Solids, edited by F. Abeles (North-Holland Publishing Company, Amsterdam, London, 1972)

  30. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications Inc., New York, 1975), p. 91

    Google Scholar 

  31. T.S. Moss, G.J. Burrell, E. Ellis, Semiconductor Opto-Electronics (Butterworth’s Scientific Publication LTD, London, 1973)

    Google Scholar 

  32. M. Abdel-Baki, F.A. Abdel, F. Wahab, El-Diasty, optical characterization of xTiO2–(60 − x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties. Mater. Chem. Phys. 96, 201–210 (2006)

    Article  Google Scholar 

  33. M. Caglar, S. Ilican, Y. Calgan, Y. Sahin, F. Yakuphanoglu, D. Hur, A spectro electrochemical study on single-oscillator model and optical constants of sulfonated polyaniline film. Spectrochimica Acta A 71, 621–627 (2008)

    Article  Google Scholar 

  34. S.H. Wemple, M. DiDomenco, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1342 (1971)

    Article  Google Scholar 

  35. D.K. Madhup, D.P. Subedi, A. Huczko, Influence of doping on optical properties of ZnO Nanofilms, Optoelectron. Adv. Mater. Rapid Commun. 4, 1582–1586 (2010)

  36. S.H. Wample, Material dispersion in optical fibers. Appl. Opt. 18, 31–35 (1979)

    Article  Google Scholar 

  37. T. Wagner, M. Krbal, T. Kohoutek, V. Peina, M. Vlek, M. Frumar, Kinetics of optically- and thermally-induced diffusion and dissolution of silver in spin-coated As33S67 amorphous films; their properties and structure. J. Non-Cryst. Solids 326, 233–237 (2003)

    Article  Google Scholar 

  38. A. Kuzmin, J. Purans, R. Kalendarev, Local structure and vibrational dynamics in NiWO4. Ferroelectrics 258, 21–30 (2001)

    Article  Google Scholar 

  39. R. Sivakumar, C. Sanjeeviraja, M. Jayachandran, R. Gopalakrishnan, S.N. Sarangi, D. Paramanik, T. Som, Modification of WO3 thin films by MeV N+-ion beam irradiation. J. Phys.: Condens. Matter 19, 186204–186213 (2007)

    Google Scholar 

  40. C. Diaz-Guerra, A. Remon, J. Garcia, J. Piqueras, Cathodoluminescence and photoluminescence spectroscopy of NiO. Phys. Stat. Sol. (a) 163, 497–503 (1997)

    Article  Google Scholar 

  41. Yude Wang, Chunlai Ma, Xiaodan Sun, Hengde Li, Preparation and photoluminescence properties of organic–inorganic nanocomposite with a mesolamellar nickel oxide. Microporous Mesoporous Mater. 71, 99–102 (2004)

    Article  Google Scholar 

  42. D. Adler, J. Feinleib, Electrical and optical properties of narrow-band materials. Phys. Rev. B 2, 3112–3134 (1970)

    Article  Google Scholar 

  43. S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M. Ekramul Mahmud, M.N. Daud, Structural and optical characterization of metal tungstates (MWO4; M = Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem. Cent. J. 7, 80–90 (2013)

    Article  Google Scholar 

  44. E.G. Lee, M.D. Kim, D. Lee, Effect of the carrier capture process on the photoluminescence intensity and the decay time of semiconductor quantum dots. J. Korean Phys. Soc. 48, 1228–1232 (2006)

    Google Scholar 

  45. T.S. Shyju, S. Anandhi, R. Sivakumar, S.K. Garg, R. Gopalakrishnan, Investigation on structural, optical, morphological and electrical properties of thermally deposited lead selenide (PbSe) nanocrystalline thin films. J. Cryst. Growth 353, 47 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (K. S. Usha) gratefully acknowledges the Department of Science and Technology, New Delhi, India for the financial assistance rendered through Innovation in Science Pursuit for Inspired Research (INSPIRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usha, K.S., Sivakumar, R. & Sanjeeviraja, C. Effect of substrate temperature on structural and optical properties of nickel tungsten oxide thin films. J Mater Sci: Mater Electron 26, 1033–1044 (2015). https://doi.org/10.1007/s10854-014-2501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2501-2

Keywords

Navigation