Skip to main content
Log in

Fabrication and characterization of X-ray array detectors based on polycrystalline PbI2 thick films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline PbI2 thick films were grown by using close spaced vapor deposition method on glass substrate with a conducting indium–tin-oxide coating. The morphology shows a uniquely oriented film structure with hexagonal platelets accurately being upright on substrate surface. An array detector with 12 pixels was fabricated based on this structure of the thick film. It is shown that the dark current is lower than 3 nA at bias voltage below 500 V, and the dark resistivity is as high as 1011 Ω cm. A mapping of dark current density of the sensitive area of the array detector exhibits a better uniformity in the central area than the fringe area. A quick photocurrent response to X-ray excitation was obtained. The photoresponse rise time about 250 μs was obtained from the detectors and the photocurrent decays in a few seconds. The values of photocurrent are higher about two orders of magnitude than the values of dark current. The distribution of photocurrent is more uniform than that of dark current in the sensitive area of the detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.R. Bennett, K.S. Shah, Y. Dmitriev, M. Klugerman, T. Gupta, M.R. Squillante, R.A. Street, L. Partain, G. Zentai, R. Pavlyuchkova, Nucl. Instrum. Methods A 505, 269 (2003). doi:10.1016/S0168-9002(03)01066-0

    Article  Google Scholar 

  2. G. Zentai, L. Partain, R. Pavlyuchkova, C. Proano, G. Virshup, P. Bennet, K. Shah, Y. Dmitriev, J. Thomas, Proc. SPIE 5368, 668 (2004). doi:10.1117/12.535994

    Article  Google Scholar 

  3. K.S. Shah, P.R. Bennett, Y.N. Dmitriyev, L.J. Cirignano, M. Klugerman, M.R. Squillante, R.A. Street, J.T. Rahn, S.E. Ready, Proc. SPIE 3770, 164 (1999). doi:10.1117/12.368179

    Article  Google Scholar 

  4. R.A. Street, K.S. Shah, S.E. Ready, R. Apte, P.R. Bennett, M. Klugerman, Y. Dmitriev, Proc. SPIE 3336, 24 (1998). doi:10.1117/12.317027

    Article  Google Scholar 

  5. X.H. Zhu, H. Sun, D.Y. Yang, X.L. Zheng, Nucl. Instrum. Methods A 691, 10 (2012). doi:10.1016/j.nima.2012.07.003

    Article  Google Scholar 

  6. A.M. Caldeira Filho, M. Mulato, Nucl. Instrum. Methods A 636, 82 (2011). doi:10.1016/j.nima.2011.01.093

    Article  Google Scholar 

  7. M. Schieber, N. Zamoshchik, O. Khakhan, A. Zuck, J. Cryst. Growth 310, 3168 (2008). doi:10.1016/j.jcrysgro.2008.02.030

    Article  Google Scholar 

  8. G. Zentai, L. Partain, R. Pavlyuchkova, C. Proano, M. Schieber, J. Thomas, Proc. SPIE 5541, 171 (2004). doi:10.1117/12.581223

    Article  Google Scholar 

  9. H. Sun, X.H. Zhu, D.Y. Yang, Z.Y. He, S.F. Zhu, B.J. Zhao, J. Semicond. 33, 053002 (2012)

    Article  Google Scholar 

  10. K.S. Shah, F. Olschner, L.P. Moy, P. Bennett, M. Misra, J. Zhang, M.R. Squillante, J.C. Lund, Nucl. Instrum. Methods A 380, 266 (1996). doi:10.1016/S0168-9002(96)00346-4

    Article  Google Scholar 

  11. K.S. Shah, P. Bennett, L. Cirignano, Y. Dmitriyev, M. Klugerman, K. Mandal, L.P. Moy, R.A. Street, MRS Proc. 487, 351 (1997). doi:10.1557/PROC-487-351

    Article  Google Scholar 

  12. M. Matuchova, K. Zdansky, J. Zavadil, A. Danilewsky, J. Maixner, D. Alexiev, J. Mater. Sci.: Mater. Electron. 20, 289 (2009). doi:10.1007/s10854-008-9831-x

    Google Scholar 

  13. R.A. Street, S.E. Ready, K. Van Schuylenbergh, J. Ho, J.B. Boyce, P. Nylenb, K. Shah, L. Melekhov, H. Hermon, J. Appl. Phys. 91, 3345 (2002). doi:10.1063/1.1436298

  14. Y. Dmitriev, P.R. Bennett, L.J. Cirignano, M. Klugerman, K.S. Shah, Nucl. Instrum. Methods A 594, 368 (2008). doi:10.1016/j.nima.2007.10.008

    Article  Google Scholar 

  15. G. Zentai, L. Partain, R. Pavlyuchkova, C. Proano, M. Schieber, K. Shah, P. Bennett, L. Melekhov, H. Gilboa, IEEE Trans. Nucl. Sci. 53, 2506 (2006). doi:10.1109/TNS.2006.880975

    Article  Google Scholar 

  16. Y. Kang, L.E. Antonuk, Y. El-Mohri, L. Hu, Y. Li, A. Sawant, Z. Su, Y. Wang, J. Yamamoto, Q. Zhao, IEEE Trans. Nucl. Sci. 52, 38 (2005). doi:10.1109/TNS.2004.843135

    Article  Google Scholar 

  17. Y. Dmitriev, P.R. Bennett, L.J. Cirignano, M. Klugerman, K.S. Shah, Nucl. Instrum. Methods A 584, 165 (2008). doi:10.1016/j.nima.2007.10.008

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China No. 50902012, Scientific Research Foundation of CUIT No. CSRF201005, Scientific Research Fund of Sichuan Provincial Education Department No. 10ZA131, Technology Support Program Fund of Science and Technology Department of Sichuan Province No. 2014GZ0020, and Strategic Emerging Products Project Fund of Sichuan Province No. 2014GZX0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Sun, H., Yang, D. et al. Fabrication and characterization of X-ray array detectors based on polycrystalline PbI2 thick films. J Mater Sci: Mater Electron 25, 3337–3343 (2014). https://doi.org/10.1007/s10854-014-2023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2023-y

Keywords

Navigation