Skip to main content
Log in

Polyimide/CsxWO3 composite aerogel fibers with dual-channel thermal management strategy

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyimide aerogel fibers (PAFs) have good thermal insulation due to their low density and ultra-high porosity. In this work, in order to further improve the temperature regulation performance of PAFs in extremely cold environments, a novel polyimide/CsxWO3 composite aerogel fiber (PCAF) was prepared by the freeze-spinning technology. The as-prepared PCAFs exhibit lightweight, high-strength and thermal insulation properties. Particularly, the outstanding near-infrared absorption of CsxWO3 could endow the PCAF textiles with excellent photothermal conversion and radiative heating under solar irradiation in cold environments. It was clarified that the photothermal conversion efficiency of the PCAF-8 can be increased by about 3 times compared with the pure PAF after exposure to infrared radiation for 100 s. This result indicates that the PCAFs possess excellent self-heating and photothermal temperature regulation performance, which are significantly different from PAF. The thermal insulation and self-heating of the PCAFs due to their porous structure and photothermal conversion can synergistically keep warm and inhibit human heat loss in the cold, reaching a kind of dual-channel thermal management mode. In addition, the CsxWO3 component with visible light transmission is helpful to maintaining the original color of the fiber, avoiding the dull and unappealing color of conventional photothermal coatings. Therefore, this work provides a new strategy for outdoor personal thermal management in cold weather, making PCAFs a promising solution for extreme weather applications beyond traditional PAFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Karamikamkar S, Behzadfar E, Naguib HE, Park CB (2020) Insights into in-situ sol-gel conversion in graphene modified polymer-based silica gels for multifunctional aerogels. Chem Eng J 392:123813. https://doi.org/10.1016/j.cej.2019.123813

    Article  CAS  Google Scholar 

  2. Karamikamkar S, Fashandi M, Naguib HE, Park CB (2020) In situ interface design in graphene-embedded polymeric silica aerogel with organic/inorganic hybridization. ACS Appl Mater Interfaces 12(23):26635–26648. https://doi.org/10.1021/acsami.0c04531

    Article  CAS  PubMed  Google Scholar 

  3. Karamikamkar S, Abidli A, Behzadfar E, Rezaei S, Naguib HE, Park CB (2019) The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel. RSC Adv 9(20):11503–11520. https://doi.org/10.1039/c9ra00994a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karamikamkar S, Naguib HE, Park CB (2020) Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review. Adv Colloid Interface Sci 276:102101. https://doi.org/10.1016/j.cis.2020.102101

    Article  CAS  PubMed  Google Scholar 

  5. Mosanenzadeh SG, Karamikamkar S, Saadatnia Z, Park CB, Naguib HE (2020) PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications. Sep Purif Technol 250:117279. https://doi.org/10.1016/j.seppur.2020.117279

    Article  CAS  Google Scholar 

  6. Mosanenzadeh SG, Saadatnia Z, Karamikamkar S, Park CB, Naguib HE (2020) Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications. RSC Adv 10(39):22909–22920. https://doi.org/10.1039/d0ra03907a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hong C-Q, Han J-C, Zhang X-H, Du J-C (2013) Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scr Mater 68(8):599–602. https://doi.org/10.1016/j.scriptamat.2012.12.015

    Article  CAS  Google Scholar 

  8. Ma XYD, Ang JM, Zhang Y et al (2019) Highly porous polymer nanofibrous aerogels cross-linked via spontaneous inter-fiber stereocomplexation and their potential for capturing ultrafine airborne particles. Polymer 179:121649. https://doi.org/10.1016/j.polymer.2019.121649

    Article  CAS  Google Scholar 

  9. Biener J, Stadermann M, Suss M et al (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4(3):656. https://doi.org/10.1039/c0ee00627k

    Article  CAS  Google Scholar 

  10. Zhao X, Zhang J, Wang X, Zhang J, Liu B, Yi X (2019) Polyimide aerogels crosslinked with MWCNT for enhanced visible-light photocatalytic activity. Appl Surf Sci 478:266–274. https://doi.org/10.1016/j.apsusc.2019.01.209

    Article  CAS  Google Scholar 

  11. Sridar S, Churchward MA, Mushahwar VK, Todd KG, Elias AL (2017) Peptide modification of polyimide-insulated microwires: towards improved biocompatibility through reduced glial scarring. Acta Biomater 60:154–166. https://doi.org/10.1016/j.actbio.2017.07.026

    Article  CAS  PubMed  Google Scholar 

  12. Tafreshi OA, Mosanenzadeh SG, Karamikamkar S, Saadatnia Z, Park CB, Naguib HE (2022) A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Mater Today Chem 23:100736. https://doi.org/10.1016/j.mtchem.2021.100736

    Article  CAS  Google Scholar 

  13. Xue T, Zhu C, Feng X, Wali Q, Fan W, Liu T (2022) Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv Fiber Mater 4(5):1118–1128. https://doi.org/10.1007/s42765-022-00145-8

    Article  CAS  Google Scholar 

  14. Du Y, Zhang X, Wang J et al (2020) Reaction-spun transparent silica aerogel fibers. ACS Nano 14(9):11919–11928. https://doi.org/10.1021/acsnano.0c05016

    Article  CAS  PubMed  Google Scholar 

  15. Mroszczok J, Schulz B, Wilsch K, Frenzer G, Kasper S, Seide G (2017) Cellulose aerogel fibres for thermal encapsulation of diesel hybrid engines for fuel savings in cars. Mater Today Proc 4:S244–S248. https://doi.org/10.1016/j.matpr.2017.09.194

    Article  Google Scholar 

  16. Zhou J, Hsieh Y-L (2020) Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy 68:104305. https://doi.org/10.1016/j.nanoen.2019.104305

    Article  CAS  Google Scholar 

  17. Wu X, Hong G, Zhang X (2019) Electroless plating of graphene aerogel fibers for electrothermal and electromagnetic applications. Langmuir 35(10):3814–3821. https://doi.org/10.1021/acs.langmuir.8b04007

    Article  CAS  PubMed  Google Scholar 

  18. Xu Z, Zhang Y, Li P, Gao C (2012) Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6(8):7103–7113. https://doi.org/10.1021/nn3021772

    Article  CAS  PubMed  Google Scholar 

  19. Liu Z, Lyu J, Fang D, Zhang X (2019) Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 13(5):5703–5711. https://doi.org/10.1021/acsnano.9b01094

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Chen X, Li X, Dong J, Zhao X, Zhang Q (2022) Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications. Adv Fiber Mater 4(5):1267–1277. https://doi.org/10.1007/s42765-022-00175-2

    Article  CAS  Google Scholar 

  21. Wang Y, Cui Y, Shao Z et al (2020) Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chem Eng J 390:124623. https://doi.org/10.1016/j.cej.2020.124623

    Article  CAS  Google Scholar 

  22. Li M, Gan F, Dong J, Fang Y, Zhao X, Zhang Q (2021) Facile preparation of continuous and porous polyimide aerogel fibers for multifunctional applications. ACS Appl Mater Interfaces 13(8):10416–10427. https://doi.org/10.1021/acsami.0c21842

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Dong G, Liu Z, Zhang X (2021) Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol-gel confined transition strategy. ACS Nano 15(3):4759–4768. https://doi.org/10.1021/acsnano.0c09391

    Article  CAS  PubMed  Google Scholar 

  24. Cao D (2023) Enhanced buckling strength of the thin-walled continuous carbon fiber–reinforced thermoplastic composite through dual coaxial nozzles material extrusion process. Int J Adv Manuf Technol 128(3–4):1305–1315. https://doi.org/10.1007/s00170-023-12014-8

    Article  Google Scholar 

  25. Wang Z, Yang H, Li Y, Zheng X (2020) Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles. ACS Appl Mater Interfaces 12(13):15726–15736. https://doi.org/10.1021/acsami.0c01330

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Zhang X (2021) Electrically conductive, optically responsive, and highly orientated Ti3C2Tx mxene aerogel fibers. Adv Funct Mater 32(4):2107767. https://doi.org/10.1002/adfm.202107767

    Article  CAS  Google Scholar 

  27. Cao D (2023) Fusion joining of thermoplastic composites with a carbon fabric heating element modified by multiwalled carbon nanotube sheets. Int J Adv Manuf Technol 128(9–10):4443–4453. https://doi.org/10.1007/s00170-023-12202-6

    Article  Google Scholar 

  28. Feng C, Yu SS (2021) 3d printing of thermal insulating polyimide/cellulose nanocrystal composite aerogels with low dimensional shrinkage. Polymers (Basel) 13(21):3614. https://doi.org/10.3390/polym13213614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Q, Xue T, Tian J, Yang Y, Fan W, Liu T (2022) Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation. Compos Sci Technol 226:109541. https://doi.org/10.1016/j.compscitech.2022.109541

    Article  CAS  Google Scholar 

  30. Mitropoulos AN, Burpo FJ, Nguyen CK et al (2019) Noble metal composite porous silk fibroin aerogel fibers. Materials (Basel) 12(6):894. https://doi.org/10.3390/ma12060894

    Article  CAS  PubMed  Google Scholar 

  31. Yang H, Wang Z, Liu Z, Cheng H, Li C (2019) Continuous, strong, porous silk firoin-based aerogel fibers toward textile thermal insulation. Polymers (Basel) 11(11):1899. https://doi.org/10.3390/polym11111899

    Article  CAS  PubMed  Google Scholar 

  32. Wu X, Wang J, Zhang G et al (2017) Series of MxWO3/ZnO (m = K, Rb, NH4) nanocomposites: combination of energy saving and environmental decontamination functions. Appl Catal B 201:128–136. https://doi.org/10.1016/j.apcatb.2016.08.030

    Article  CAS  Google Scholar 

  33. Wang Q, Li C, Xu W et al (2017) Effects of mo-doping on microstructure and near-infrared shielding performance of hydrothermally prepared tungsten bronzes. Appl Surf Sci 399:41–47. https://doi.org/10.1016/j.apsusc.2016.12.022

    Article  CAS  Google Scholar 

  34. Yan M, Gu H, Liu Z, Guo C, Liu S (2015) Effective near-infrared absorbent: ammonium tungsten bronze nanocubes. RSC Adv 5(2):967–973. https://doi.org/10.1039/c4ra12471e

    Article  CAS  Google Scholar 

  35. Ma G, Zhang Z, Sun K et al (2016) High-performance aqueous asymmetric supercapacitor based on K0.3WO3 nanorods and nitrogen-doped porous carbon. J Power Sour 330:219–230. https://doi.org/10.1016/j.jpowsour.2016.09.022

    Article  CAS  Google Scholar 

  36. Yang D, Liu J, Shi F et al (2023) One-step solvothermal synthesis of CsxWO3: crystal growth regulation by halogen acids with generating oxygen vacancies and W5+ for improving transparent thermal insulation performance. J Alloys Compd 942:169119. https://doi.org/10.1016/j.jallcom.2023.169119

    Article  CAS  Google Scholar 

  37. Liu J, Zhang HB, Xie X et al (2018) Multifunctional, superelastic, and lightweight mxene/polyimide aerogels. Small 14(45):e1802479. https://doi.org/10.1002/smll.201802479

    Article  CAS  PubMed  Google Scholar 

  38. Qiao S, Zhang H, Kang S et al (2020) Hydrophobic, pore-tunable polyimide/polyvinylidene fluoride composite aerogels for effective airborne particle filtration. Macromol Mater Eng 30:58. https://doi.org/10.1002/mame.202000129

    Article  CAS  Google Scholar 

  39. Ren R-P, Wang Z, Ren J, Lv Y-K (2018) Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J Mater Sci 54(7):5918–5926. https://doi.org/10.1007/s10853-018-03238-1

    Article  CAS  Google Scholar 

  40. Liu J, Ran S, Fan C et al (2019) One pot synthesis of Pt-doped CsxWO3 with improved near infrared shielding for energy-saving film applications. Sol Energy 178:17–24. https://doi.org/10.1016/j.solener.2018.12.007

    Article  CAS  Google Scholar 

  41. Atuchin VV, Galashov EN, Khyzhun OY, Kozhukhov AS, Pokrovsky LD, Shlegel VN (2011) Structural and electronic properties of ZnWO4 (010) cleaved surface. Cryst Growth Des 11(6):2479–2484. https://doi.org/10.1021/cg200265p

    Article  CAS  Google Scholar 

  42. Atuchin VV, Pokrovsky LD, Khyzhun OY, Sinelnichenko AK, Ramana CV (2008) Surface crystallography and electronic structure of potassium yttrium tungstate. J Appl Phys 104(3):033518. https://doi.org/10.1063/1.2963957

    Article  CAS  Google Scholar 

  43. Zhuo L, Ma C, Xie F, Chen S, Lu Z (2020) Methylcellulose strengthened polyimide aerogels with excellent oil/water separation performance. Cellulose 27(13):7677–7689. https://doi.org/10.1007/s10570-020-03311-6

    Article  CAS  Google Scholar 

  44. Rahmatabadi D, Soltanmohammadi K, Aberoumand M et al (2022) Development of pure poly vinyl chloride (PVC) with excellent 3D printability and macro- and micro-structural properties. Macromol Mater Eng 308(5):2200568. https://doi.org/10.1002/mame.202200568

    Article  CAS  Google Scholar 

  45. Fei Z, Yang Z, Chen G, Li K, Zhao S, Su G (2018) Preparation and characterization of glass fiber/polyimide/SiO2 composite aerogels with high specific surface area. J Mater Sci 53(18):12885–12893. https://doi.org/10.1007/s10853-018-2553-4

    Article  CAS  Google Scholar 

  46. Rahman H, Yarali E, Zolfagharian A, Serjouei A, Bodaghi M (2021) Energy absorption and mechanical performance of functionally graded soft-hard lattice structures. Materials (Basel) 14(6):1366. https://doi.org/10.3390/ma14061366

    Article  CAS  PubMed  Google Scholar 

  47. Cao D, Bouzolin D, Lu H, Griffith DT (2023) Bending and shear improvements in 3D-printed core sandwich composites through modification of resin uptake in the skin/core interphase region. Compos Part B Eng 264:110912. https://doi.org/10.1016/j.compositesb.2023.110912

    Article  CAS  Google Scholar 

  48. Cui Y, Gong H, Wang Y, Li D, Bai H (2018) A thermally insulating textile inspired by polar bear hair. Adv Mater 30(14):e1706807. https://doi.org/10.1002/adma.201706807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51778098) and the Basic Scientific Research Project of Education Department of Liaoning Province (LJKMZ20220887).

Author information

Authors and Affiliations

Authors

Contributions

JX: Conceptualization, Data curation, Formal analysis, Writing-original draft; HS: Formal analysis, Validation; JL: Conceptualization, Funding acquisition, Formal analysis, Writing-review & editing; FS: Conceptualization, Supervision, Funding acquisition, Formal analysis, Writing-review & editing; CM: Formal analysis, Visualization, Validation; DY: Formal analysis, Visualization.

Corresponding author

Correspondence to Fei Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 54725 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Shi, H., Liu, J. et al. Polyimide/CsxWO3 composite aerogel fibers with dual-channel thermal management strategy. J Mater Sci 59, 8796–8809 (2024). https://doi.org/10.1007/s10853-024-09734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09734-x

Navigation