Skip to main content
Log in

Origami theory-inspired multiscale simulation of folded graphene aerogel with improved mechanical properties

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In our previous work, inspired by the Origami theory, folded graphene oxide aerogel (fGA) with the arch morphology was successfully prepared. However, the self-folding mechanism of folded graphene oxide (fGO) and the enhancement mechanism of the interlayer interface were hard to be explained. Therefore, building on previous work, this study adopted a multiscale modeling approach. By using the molecular dynamics (MD) method, the folding mechanism of fGO was investigated on a microscopic scale. The effect of fGO microstructure on mechanical properties was also studied. GO folding was attributed to Cu2+ coordination and electrostatic interactions. Compared to GO, fGO showed better mechanical property parameters. Furthermore, the mechanical behavior of the samples was researched on a macroscopic scale. The connection points between the sheet layers increased and became tighter when the fGA structure was stressed. The strength and resistance to deformation of the aerogel became strong and stabilized the structure. The interfacial bonds were mainly enhanced in the interlayer by the increase of hydrogen bonding (H bond) and van der Waals forces (vdW). Thus, the multiscale modeling approach was of theoretical guidance for the improvement of the mechanical properties of fGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Author contribution

Tao Wang contributed to data curation and writing-original draft. Haiming Li contributed to conceptualization. Hongyan Li contributed to methodology and software. Kai Cao contributed to formal analysis. Xue Han contributed to finite element analysis. Juanjuan Wang contributed to molecular dynamics simulation. Xiaolan Liao contributed to software and resources. Huan Li contributed to investigation, supervision, and validation. Wei Ding contributed to writing—review and editing.

References

  1. KS Novoselov VI Fal’ko L Colombo PR Gellert MG Schwab K Kim 2012 A roadmap for graphene Nature 490 192 200 https://doi.org/10.1038/nature11458

    Article  CAS  PubMed  Google Scholar 

  2. S Chen D Seveno L Gorbatikh 2021 Multiscale modeling and maximizing the thermal conductivity of Polyamide-6 reinforced by highly entangled graphene flakes Compos Part A Appl Sci Manuf 151 106632https://doi.org/10.1016/j.compositesa.2021.106632

    Article  CAS  Google Scholar 

  3. KS Novoselov AK Geim SV Morozov D Jiang Y Zhang SV Dubonos IV Grigorieva AA Firsov 2004 Electric field effect in atomically thin carbon films Science 306 666 669 https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  4. Y Zhu S Murali W Cai X Li JW Suk JR Potts RS Ruoff 2010 Graphene and graphene oxide: synthesis, properties, and applications Adv Mater 22 3906 3924 https://doi.org/10.1002/adma.20100.1068

    Article  CAS  PubMed  Google Scholar 

  5. F Javanshour KR Ramakrishnan RK Layek P Laurikainen A Prapavesis M Kanerva P Kallio AW Vuure Van 2021 Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy composites Compos Part A Appl Sci Manuf 142 106270https://doi.org/10.1016/j.compositesa.2020.106270

    Article  CAS  Google Scholar 

  6. L Song Y Chen Q Gao Z Li X Zhang H Wang L Guan Z Yu 2022 Low Weight, low thermal Conductivity, and highly efficient electromagnetic wave absorption of Three-Dimensional Graphene/SiC-nanosheets aerogel Compos Part A Appl Sci Manuf 158 106980https://doi.org/10.1016/j.compositesa.2022.106980

    Article  CAS  Google Scholar 

  7. QQ Kong H Jia LJ Xie ZC Tao X Yang D Liu GH Sun QG Guo 2021 Ultra-high temperature graphitization of three-dimensional large-sized graphene aerogel for the encapsulation of phase change materials Compos Part A Appl Sci Manuf 145 106391https://doi.org/10.1016/j.compositesa.2021.106391

    Article  CAS  Google Scholar 

  8. Y Zhao J Chen X Lai H Li X Zeng C Jiang Q Zeng K Li 2022 Efficient flame-retardant and multifunctional polyimide/MXene composite aerogel for intelligent fire protection Compos Part A Appl Sci Manuf 163 107210https://doi.org/10.1016/j.compositesa.2022.107210

    Article  CAS  Google Scholar 

  9. W Wang X Jin H Huang S Hu C Wu H Wang Y Pan C Hong 2023 Thermal-insulation and ablation-resistance of Ti-Si binary modified carbon/phenolic nanocomposites for high-temperature thermal protection Compos Part A Appl Sci Manuf 169 107528https://doi.org/10.1016/j.compositesa.2023.107528

    Article  CAS  Google Scholar 

  10. A Ghafar P Gurikov R Subrahmanyam K Parikka M Tenkanen I Smirnova KS Mikkonen 2017 Mesoporous guar galactomannan based biocomposite aerogels through enzymatic crosslinking Compos Part A Appl Sci Manuf 94 93 103 https://doi.org/10.1016/j.compositesa.2016.12.013

    Article  CAS  Google Scholar 

  11. B Wicklein A Kocjan G Salazar-Alvarez F Carosio G Camino M Antonietti L Bergström 2015 Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide Nat Nanotechnol 10 277 283 https://doi.org/10.1038/nnano.2014.248

    Article  CAS  PubMed  Google Scholar 

  12. X Zhang VA Öberg J Du J Liu EMJ Johansson 2018 Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode Energ Environ Sci 11 354 364 https://doi.org/10.1039/c7ee02772a

    Article  CAS  Google Scholar 

  13. LZ Guan JF Gao YB Pei L Zhao LX Gong YJ Wan H Zhou N Zheng 2016 Silane bonded graphene aerogels with tunable functionality and reversible compressibility Carbon 107 573 582 https://doi.org/10.1016/j.carbon.2016.06.022

    Article  CAS  Google Scholar 

  14. P Liu TQ Tran Z Fan HM Duong 2015 Formation mechanisms and morphological effects on multi-properties of carbon nanotube fibers and their polyimide aerogel-coated composites Compos Sci Technol 117 114 120 https://doi.org/10.1016/j.compscitech.2015.06.009

    Article  CAS  Google Scholar 

  15. JY Hong EH Sohn S Park HS Park 2015 Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel Chem Eng J 269 229 235 https://doi.org/10.1016/j.cej.2015.01.066

    Article  CAS  Google Scholar 

  16. I Lee SM Kang SC Jang GW Lee HE Shim M Rethinasabapathy C Roh YS Huh 2019 One-pot gamma ray-induced green synthesis of a Prussian blue-laden polyvinylpyrrolidone/reduced graphene oxide aerogel for the removal of hazardous pollutants J Mater Chem A 7 1737 1748 https://doi.org/10.1039/c8ta10250c

    Article  CAS  Google Scholar 

  17. A Wang S Bok R Thiruvengadathan K Gangopadhyay JA McFarland MR Maschmann S Gangopadhyay 2018 Reactive nanoenergetic graphene aerogel synthesized by one-step chemical reduction Combust Flame 196 400 406 https://doi.org/10.1016/j.combustflame.2018.06.034

    Article  CAS  Google Scholar 

  18. G Tang ZG Jiang X Li HB Zhang A Dasari ZZ Yu 2014 Three dimensional graphene aerogels and their electrically conductive composites Carbon 77 592 599 https://doi.org/10.1016/j.carbon.2014.05.063

    Article  CAS  Google Scholar 

  19. X Cao J Zhang S Chen RJ Varley K Pan 2020 1D/2D Nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor Adv Funct Mater 30 2003618 https://doi.org/10.1002/adfm.202003618

    Article  CAS  Google Scholar 

  20. Qin Y, Peng Q, Ding Y, Lin Z, Wang C, Li Y, Xu F, Li J et al (2015) Lightweight, superelastic, and mechanically flexible graphenepolyimide nanocomposite foam for strain sensor application. ACS Nano 9:8933–8941. https://doi.org/10.1021/acsnano.5b02781

  21. W Wan Z Zhao TC Hughes B Qian S Peng X Hao J Qiu 2015 Graphene oxide liquid crystal Pickering emulsions and their assemblies Carbon 85 16 23 https://doi.org/10.1016/j.carbon.2014.12.058

    Article  CAS  Google Scholar 

  22. L Lv P Zhang T Xu L Qu 2017 Ultrasensitive pressure sensor based on an ultralight sparkling graphene block ACS Appl Mater Interfaces 9 22885 22892 https://doi.org/10.1021/acsami.7b07153

    Article  CAS  PubMed  Google Scholar 

  23. J Huang Z Yan 2018 Adsorption mechanism of oil by resilient graphene aerogels from oil-water emulsion Langmuir 34 1890 1898 https://doi.org/10.1021/acs.langmuir.7b03866

    Article  CAS  PubMed  Google Scholar 

  24. R Zhang R Hu X Li Z Zhen Z Xu N Li L He H Zhu 2018 A bubble-derived strategy to prepare multiple graphene-based porous materials Adv Funct Mater 28 1705879 https://doi.org/10.1002/adfm.201705879

    Article  CAS  Google Scholar 

  25. X Zhang T Zhang Z Wang Z Ren S Yan Y Duan J Zhang 2018 Ultralight, superelastic, and fatigue-resistant graphene aerogel templated by graphene oxide liquid crystal stabilized air bubbles ACS Appl Mater Interfaces 11 1303 1310 https://doi.org/10.1021/acsami.8b18606

    Article  CAS  PubMed  Google Scholar 

  26. P Liu H Zhang X He T Chen T Jiang W Liu M Zhang 2020 Preparation of porous conductive cellulose nanofibril based composite aerogels and performance comparison with films React Funct Polym 157 104748https://doi.org/10.1016/j.reactfunctpolym.2020.104748

    Article  CAS  Google Scholar 

  27. H Li C Sun H Liu J Li D Wang P Zhang T Liu A Yang 2019 Aerogels fabricated with origami graphene part I: preparation and mechanical behavior J Alloy Compd 783 486 493 https://doi.org/10.1016/j.jallcom.2018.12.337

    Article  CAS  Google Scholar 

  28. J Ma Z You 2013 Energy absorption of thin-walled beams with a pre-folded origami pattern Thin Wall Struct 73 198 206 https://doi.org/10.1016/j.tws.2013.08.001

    Article  Google Scholar 

  29. Tu H, Jiang H, Yu H, Xu Y (2013) Hybrid silicon-polymer platform for self-locking and self-deploying origami. Appl Phys Lett 103. https://doi.org/10.1063/1.4842235

  30. H Kawakami H Kudo 2021 Estimation method for inverse problems with linear forward operator and its application to magnetization estimation from magnetic force microscopy images using deep learning Inverse Probl Sci En 29 2131 2164 https://doi.org/10.1080/17415977.2021.1905637

    Article  Google Scholar 

  31. M Ainsworth R Rankin 2012 Guaranteed computable bounds on quantities of interest in finite element computations Int J Numer Meth Eng 89 1605 1634 https://doi.org/10.1002/nme.3276

    Article  Google Scholar 

  32. Fu X (2023) Nanostructure, Plastic deformation, and influence of strain rate concerning Ni/Al2O3 interface system using a molecular dynamic study (LAMMPS). Nanomaterials. Basel. 13. https://doi.org/10.3390/nano13040641

  33. O Henrich YA Gutierrez Fosado T Curk TE Ouldridge 2018 Coarse-grained simulation of DNA using LAMMPS Eur Phys J E Soft Matter 41 57 https://doi.org/10.1140/epje/i2018-11669-8

    Article  CAS  PubMed  Google Scholar 

  34. A Singraber J Behler C Dellago 2019 Library-based LAMMPS implementation of high-dimensional neural network potentials J Chem Theory Comput 15 1827 1840 https://doi.org/10.1021/acs.jctc.8b00770

    Article  CAS  PubMed  Google Scholar 

  35. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482. https://doi.org/10.1021/jp9731821

  36. Theodorou D, Suter U (1986) Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 19:139–154. https://doi.org/10.1021/ma00155a022

  37. Lee TU, Gattas JM (2016) Geometric design and construction of structurally stabilized accordion shelters. J Mech Robot 8. https://doi.org/10.1115/1.4032441

  38. AV Kolos 1965 Methods of refining the classical theory of bending and extension of plates Appl Math Mech 29 914 925 https://doi.org/10.1016/0021-8928(65)90104-8

    Article  Google Scholar 

  39. ST Smith JG Teng 2001 Interfacial stresses in plated beams Eng Struct 23 857 871 https://doi.org/10.1016/S0141-0296(00)00090-0

    Article  Google Scholar 

  40. H Li Q Yang H Liu J Li W Yuan B Zhang 2021 Folded graphene/copper oxide hybrid aerogels: folding, self-reinforcement, and electrochemical performance J Mater Sci-Mater El 32 11004 11016 https://doi.org/10.1007/s10854-021-05759-z

    Article  CAS  Google Scholar 

  41. L Liu L Wang J Gao J Zhao X Gao Z Chen 2012 Amorphous structural models for graphene oxides Carbon 50 1690 1698 https://doi.org/10.1016/j.carbon.2011.12.014

    Article  CAS  Google Scholar 

  42. J Zhang J Zhao J Lu 2012 Intrinsic strength and failure behaviors of graphene grain boundaries ACS Nano 6 2704 2711 https://doi.org/10.1021/nn3001356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (grant numbers 23JCYBJC00200), the National Natural Science Foundation of China (grant numbers 51503141), and the Tianjin Research Innovation Project for Postgraduate Students [grant numbers 2022SKY389].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, H., Li, H. et al. Origami theory-inspired multiscale simulation of folded graphene aerogel with improved mechanical properties. J Mater Sci 59, 7825–7839 (2024). https://doi.org/10.1007/s10853-024-09655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09655-9

Navigation