Skip to main content
Log in

Synthesis and characterization of a Dion–Jacobson two-dimensional perovskite

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) metal halide perovskites feature several specific advantages over others 2D materials, such as facile wet chemical synthesis and layers exfoliation, high composition combination especially the choice of organic cations as well as 2D phase, excellent confinement for exciton. In this paper, we present a fundamental study of diaminonaphthalene lead iodide (DANPI) perovskite, a Dion–Jacobson 2D perovskite based on divalent cation organic spacer 1,5-diaminonaphthalene. We report its material synthesis, optical and structural characterization as well as DFT calculations. Hydro-iodic acid-based wet chemistry was used to prepare DANPI crystals and, by cast-capping, thin films as well. Both DANPI materials show a dominant emission peak at about 519 nm with a full width at half-maximum as small as 14 nm. This peak coincides with the absorption edge of the material at 510 nm (2.43 eV) which suggests an exciton-related recombination process. According to single-crystal X-ray diffraction measurements the crystal structure could be either monoclinic P21/c or tetragonal P4212. DFT calculations including spin–orbit coupling show that the DANPI band gap is direct, with a valence band of s-symmetry and a conduction band of p-symmetry.

Graphical Abstract

  • A dominant emission peak at about 519 nm with a full width at half-maximum as small as 14 nm.

  • The crystal structure could be either monoclinic P21/c or tetragonal P4212.

  • The DANPI band gap is direct, at 2.43 eV, with a valence band of s-symmetry and a conduction band of p-symmetry.

  • Suggested Dexter electron exchange process for Wannier excitons to organic Frenkel excitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  2. Stranks SD, Snaith HJ (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10:391–402. https://doi.org/10.1038/nnano.2015.90

    Article  CAS  PubMed  Google Scholar 

  3. Manser JS, Saidaminov MI, Christians JA et al (2016) Making and breaking of lead halide perovskites. Acc Chem Res 49:330–338. https://doi.org/10.1021/acs.accounts.5b00455

    Article  CAS  PubMed  Google Scholar 

  4. Stoumpos CC, Kanatzidis MG (2016) Halide perovskites: poor man’s high-performance semiconductors. Adv Mater 28:5778–5793. https://doi.org/10.1002/adma.201600265

    Article  CAS  PubMed  Google Scholar 

  5. Mao L, Stoumpos CC, Kanatzidis MG (2019) Two-dimensional hybrid halide perovskites: principles and promises. J Am Chem Soc 141:1171–1190. https://doi.org/10.1021/jacs.8b10851

    Article  CAS  PubMed  Google Scholar 

  6. Lin H, Zhou C, Tian Y et al (2018) Low-dimensional organometal halide perovskites. ACS Energy Lett 3:54–62. https://doi.org/10.1021/acsenergylett.7b00926

    Article  CAS  Google Scholar 

  7. Akkerman QA, Abdelhady AL, Manna L (2018) Zero-dimensional cesium lead halides: history, properties, and challenges. J Phys Chem Lett 9:2326–2337. https://doi.org/10.1021/acs.jpclett.8b00572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong K, Van LQ, Kim SY, Jang HW (2018) Low-dimensional halide perovskites: review and issues. J Mater Chem C 6:2189–2209. https://doi.org/10.1039/C7TC05658C

    Article  CAS  Google Scholar 

  9. Blancon J-C, Stier AV, Tsai H et al (2018) Scaling law for excitons in 2D perovskite quantum wells. Nat Commun 9:2254. https://doi.org/10.1038/s41467-018-04659-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin J, Li H, Cortecchia D et al (2017) Excitonic and polaronic properties of 2D hybrid organic-inorganic perovskites. ACS Energy Lett 2:417–423. https://doi.org/10.1021/acsenergylett.6b00659

    Article  CAS  Google Scholar 

  11. Mauck CM, Tisdale WA (2019) Excitons in 2D Organic–inorganic halide perovskites. Trends Chem 1:380–393. https://doi.org/10.1016/j.trechm.2019.04.003

    Article  CAS  Google Scholar 

  12. Yin H, Jin L, Qian Y et al (2018) Excitonic and confinement effects of 2D layered (C10H21NH3)2PbBr 4 single crystals. ACS Appl Energy Mater 1:1476–1482. https://doi.org/10.1021/acsaem.7b00265

    Article  CAS  Google Scholar 

  13. Gao X, Zhang X, Yin W et al (2019) Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications. Adv Sci 6:1900941. https://doi.org/10.1002/advs.201900941

    Article  CAS  Google Scholar 

  14. Stoumpos CC, Cao DH, Clark DJ et al (2016) Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater 28:2852–2867. https://doi.org/10.1021/acs.chemmater.6b00847

    Article  CAS  Google Scholar 

  15. Chen Y, Sun Y, Peng J et al (2018) 2D Ruddlesden-Popper perovskites for optoelectronics. Adv Mater 30:1703487. https://doi.org/10.1002/adma.201703487

    Article  CAS  Google Scholar 

  16. Righetto M, Giovanni D, Lim SS, Sum TC (2021) The photophysics of Ruddlesden-Popper perovskites: a tale of energy, charges, and spins. Appl Phys Rev 8:011318. https://doi.org/10.1063/5.0031821

    Article  CAS  Google Scholar 

  17. Mao L, Ke W, Pedesseau L et al (2018) Hybrid Dion-Jacobson 2D Lead Iodide Perovskites. J Am Chem Soc 140:3775–3783. https://doi.org/10.1021/jacs.8b00542

    Article  CAS  PubMed  Google Scholar 

  18. Gao L, Li X, Traoré B et al (2021) M-Phenylenediammonium as a new spacer for Dion-Jacobson two-dimensional perovskites. J Am Chem Soc 143:12063–12073. https://doi.org/10.1021/jacs.1c03687

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh D, Acharya D, Pedesseau L et al (2020) Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-Jacobson vs Ruddlesden-Popper phases. J Mater Chem A 8:22009–22022. https://doi.org/10.1039/D0TA07205B

    Article  CAS  Google Scholar 

  20. Soe CMM, Stoumpos CC, Kepenekian M et al (2017) New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J Am Chem Soc 139:16297–16309. https://doi.org/10.1021/jacs.7b09096

    Article  CAS  PubMed  Google Scholar 

  21. Mao L, Guo P, Kepenekian M et al (2018) Structural diversity in white-light-emitting hybrid lead bromide perovskites. J Am Chem Soc 140:13078–13088. https://doi.org/10.1021/jacs.8b08691

    Article  CAS  PubMed  Google Scholar 

  22. Smith MD, Watson BL, Dauskardt RH, Karunadasa HI (2017) Broadband emission with a massive stokes shift from sulfonium Pb–Br hybrids. Chem Mater 29:7083–7087. https://doi.org/10.1021/acs.chemmater.7b02594

    Article  CAS  Google Scholar 

  23. Nguyen-Tran T, Dinh VA, Van Ly N et al (2021) Novel (110) Double-layered guanidinium-lead iodide perovskite material: crystal structure, electronic structure, and broad luminescence. J Phys Chem C 125:964–972. https://doi.org/10.1021/acs.jpcc.0c08540

    Article  CAS  Google Scholar 

  24. Yang H, Zhang Y, Pan J et al (2017) Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem Mater 29:8978–8982. https://doi.org/10.1021/acs.chemmater.7b04161

    Article  CAS  Google Scholar 

  25. Tang Z, Guan J, Guloy AM (2001) Synthesis and crystal structure of new organic-based layered perovskites with 2,2′-biimidazolium cations. J Mater Chem 11:479–482. https://doi.org/10.1039/b007639m

    Article  CAS  Google Scholar 

  26. Kim JK, Ok KM (2023) Syntheses, structures, and optical properties of n = 3 layered Dion-Jacobson perovskites, RbEu2-Bi Ti2NbO10 (0 ≤ x ≤ 2). J Alloys Compd 937:167602. https://doi.org/10.1016/j.jallcom.2022.167602

    Article  CAS  Google Scholar 

  27. Lemmerer A, Billing DG (2012) Lead halide inorganic–organic hybrids incorporating diammonium cations. CrystEngComm 14:1954. https://doi.org/10.1039/c2ce06498g

    Article  CAS  Google Scholar 

  28. Ema K, Inomata M, Kato Y et al (2008) Nearly perfect triplet-triplet energy transfer from wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials. Phys Rev Lett 100:1–4. https://doi.org/10.1103/PhysRevLett.100.257401

    Article  CAS  Google Scholar 

  29. Era M, Maeda K, Tsutsui T (1998) Enhanced phosphorescence from naphthalene-chromophore incorporated into lead bromide-based layered perovskite having organic-inorganic superlattice structure. Chem Phys Lett 296:417–420. https://doi.org/10.1016/S0009-2614(98)01028-8

    Article  CAS  Google Scholar 

  30. Mitrofanov A, Berencén Y, Sadrollahi E et al (2023) Molecular engineering of naphthalene spacers in low-dimensional perovskites. J Mater Chem C 11:5024–5031. https://doi.org/10.1039/D3TC00132F

    Article  CAS  Google Scholar 

  31. Lin YL, Johnson JC (2021) Interlayer triplet energy transfer in Dion-Jacobson two-dimensional lead halide perovskites containing naphthalene diammonium cations. J Phys Chem Lett 12:4793–4798. https://doi.org/10.1021/acs.jpclett.1c01232

    Article  CAS  PubMed  Google Scholar 

  32. Do DK, Vu TMH, Vu TA et al (2021) Synthesis, structural analysis and luminescent characterization of 1,5-diaminonaphthalene based organic-inorganic hybrid lead iodide perovskites. In: Proceedings of International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN 2021), November 4–6, 2021 – Hanoi, pp 52–55

  33. Do DK, Nguyen TT, Hoang CH et al (2023) Structural and optical characterization of 1,5- diaminonaphthalene lead iodide two-dimensional perovskite thin films by using cast-capping method. In: The Proceedings of The 4th International Workshop on Advanced Materials and Devices (IWAMD 2023), 10 -13 August 2023, Thai Nguyen, pp 135–139

  34. Wu L, Li G, Prashanthan K et al (2023) Stabilization of inorganic perovskite solar cells with a 2D Dion-Jacobson passivating layer. Adv Mater 35:2304150. https://doi.org/10.1002/adma.202304150

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  36. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  38. Paier J, Marsman M, Hummer K et al (2006) Screened hybrid density functionals applied to solids. J Chem Phys 124:154709. https://doi.org/10.1063/1.2187006

    Article  CAS  PubMed  Google Scholar 

  39. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  40. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  41. Steiner S, Khmelevskyi S, Marsmann M, Kresse G (2016) Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1−xCox alloys. Phys Rev B 93:224425. https://doi.org/10.1103/PhysRevB.93.224425

    Article  CAS  Google Scholar 

  42. Even J (2015) Pedestrian guide to symmetry properties of the reference cubic structure of 3D all-inorganic and hybrid perovskites. J Phys Chem Lett 6:2238–2242. https://doi.org/10.1021/acs.jpclett.5b00905

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2019.361.

Author information

Authors and Affiliations

Authors

Contributions

N-TTh, TTT conceived and planned the experiments. N-TTh supervised the work. DDK and NThTh synthesized samples. LKL, HCH and TTKC performed optical characterization. DLHT, NHH, PBT and DDK provided SCXRD measurements and analysis. DDK provided powder XRD measurement. N-TTr performed DFT calculations and analyzed the theory results. N-TTh wrote the manuscript with contributions from LSD. All authors have discussed the results and commented on the final manuscript.

Corresponding author

Correspondence to Thuat Nguyen-Tran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3741 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, K.D., Nguyen, T.T., Nguyen, T.T. et al. Synthesis and characterization of a Dion–Jacobson two-dimensional perovskite. J Mater Sci 59, 7273–7282 (2024). https://doi.org/10.1007/s10853-024-09648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09648-8

Navigation