Skip to main content

Advertisement

Log in

Acoustic shock wave-induced reversible phase transition (rhombohedral to hexagonal) of bismuth telluride

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bismuth telluride (Bi2Te3), due to its thermoelectric properties, is an interesting semiconducting material for optoelectronics and energy conversion devices; still, it has limited stability and durability. Under high pressure, we can fine-tune its performance, potentially enhancing its capabilities. The presented work uses the semi-automatic Reddy tube to explore the behavior of bismuth telluride under dynamic pressure. Commercially available bismuth telluride was purchased and subjected to different numbers of shock pulses of 100, 200, 300, and 400 with 2 MPa transient pressure and 864 K transient temperature. XRD, Raman, UV-DRS, PL, and SEM were used to characterize Bi2Te3 and shock-loaded Bi2Te3. The XRD and Raman study confirms that the Bi2Te3 underwent phase transition from Bi2Te3 to Bi4Te5 (rhombohedral to hexagonal) at 300 shock pulses. The optical property of Bi2Te3 was determined using UV-DRS and PL; the bandgap and PL intensity changed with respect to the number of shock pulses. A scanning electron microscope was used to analyze sample morphology. Our findings reveal the reversible phase transition of bismuth telluride from Bi2Te3 to Bi4Te5 under dynamic shock waves, something that has not been reported earlier. Using traditional synthesis methods, Bi4Te5 consume a lot of time, leading to impurities and problems of sample quality. Our results reveal that a rapid and reversible phase transition and unique response to dynamic shock waves will allow excellent technological applications without requiring lengthy and complex synthesis methods, offering enhanced stability and potential advancements in energy conversion devices. The process detailing how shock waves initiate the phase transition is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data and code availability

The data in this manuscript can be obtained from the corresponding author.

References

  1. Shalaby MS, Yousif NM, Hashem W (2019) Structural, optical and physical properties investigations of Bi2Te3 topological insulator nanocomposites exposure to 60Co ϒ-rays. Mat Sci Eng B 271:115246–115259

    Article  Google Scholar 

  2. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  CAS  PubMed  Google Scholar 

  3. Hurtado Aviles EA, Trejo Valdez M, Torres JA, Ramos Torres CJ, Martinez Gutierrez H, Torres Torres C (2021) Photo-induced structured waves by nanostructured topological insulator Bi2Te3. Opt Laser Technol 140:107015–107026

    Article  CAS  Google Scholar 

  4. Guo X, Jia X, Jie K, Sun H, Zhang Y, Sun B, Ma H (2013) Investigating the thermoelectric properties of synthesized Bi2Te3 under different synthesis pressures. Chem Phys Lett 568:190–194

    Article  Google Scholar 

  5. Zhou F, Zhao Y, Zhou W, Tang D (2018) Temperature-dependent Raman of BiTe Nanotubes. AIP Adv 8:125330–125339

    Article  Google Scholar 

  6. Wei W, Chang C, Yang T, Liu J, Tang H, Zhang J (2018) Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies. Am Chem Soc 140:499–505

    Article  CAS  Google Scholar 

  7. Chang C, Wu M, He D, Pei Y, Wu CF, Wu X (2018) 3D charges and 2D phonon transport leading to high out-of-plane ZT in n-type SnSe. Crystals Science 360:778–783

    CAS  PubMed  Google Scholar 

  8. Qiu B, Ruan X (2010) Thermal conductivity prediction and analysis of few quintuple Bi2Te3 thin films: a molecular dynamics study. Appl Phys Lett 97:183107–183109

    Article  Google Scholar 

  9. Liu WD, Yin LC, Li L, Yang Q, Wang DZ, Li M, Shi XL, Liu Q, Bai Y, Gentle L, Wang L, Chen ZG (2023) Grain boundary re-crystallization and sub-nano regions leading to high plateau figure of merit for Bi2Te3 nanoflakes Energy. Environ Sci 16:5123–5135

    CAS  Google Scholar 

  10. Zhang X, Chen J, Zhang H, Zhu P, Wang R, Fu B (2023) Enhanced thermoelectric performance of 3D-printed Bi2Te3-based materials via adding Te/Se. J Materiomics 2:328–337

    Article  Google Scholar 

  11. Buha J, Gaspari R, Del Rio Castillo AE, Bonaccorso F, Manna L (2016) Thermal stability and anisotropic sublimation of two-dimensional colloidal Bi2Te3 and Bi2Se3 nanocrystals. Nano Lett 16:4217–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82:3045–3067

    Article  CAS  Google Scholar 

  13. Han M, Ma J, Xu H, Liu Y (2015) Two-step vapor transport deposition of large-size bridge-like Bi2Se3 nanostructures. Cryst Eng Comm 17:8449–8456

    Article  CAS  Google Scholar 

  14. Zhu YK, Sun Y, Zhu J, Song K, Liu Z, Liu M, Guo M, Dong X, Guo F, Tan X, Yu B, Cai W, Jiang J, Sui J (2022) mediating point defects endows n-type bi2te3 with high thermoelectric performance and superior mechanical robustness for power generation application. Small 18:2201352–2201363

    Article  CAS  Google Scholar 

  15. Bao D, Chen J, Yu Y, Liu W, Huang L, Han G, Tang J, Zhou D, Yang L, Chen ZG (2020) Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chem Eng J 388:124295–124328

    Article  CAS  Google Scholar 

  16. Hasanova GS, Dashdiyeva GB, Yusibov YA, Babanl MB (2020) Thermodynamic properties of the Bi2Te3 and Bi4Te5 compounds. Chem Probl 18:315–324

    Article  Google Scholar 

  17. Tezuka K, Kase S, Shan YJ (2014) Syntheses of Bi2X3(X = S, Se, Te) from elements under hydrothermal conditions. J Asian Ceram Soc 2:366–370

    Article  Google Scholar 

  18. Rajaji U, Chinnapaiyan S, Ming Chen S, Mani G, Alothman AA, Alshgari RA (2021) Bismuth telluride decorated on graphitic carbon nitrides based binary nanosheets: its application in the electrochemical determination of salbutamol (feed additive) in meat samples. J Hazard Mater 413:125265–125275

    Article  CAS  PubMed  Google Scholar 

  19. Mamur H, Faruk Dilma O, Korucu H, Ruhul Amin Bhuiyan M (2018) Cost-effective chemical solution synthesis of bismuth telluride nanostructure for thermoelectric applications. Micro Nano Lett 13:1117–1120

    Article  CAS  Google Scholar 

  20. Gupta S, Singh R, Anoop MD, Mathur D, Ray K, Kothari SL, Awasthi K, Kumar M (2019) Optical studies on bismuth chalcogenides. Mat Today Proc 10:142–150

    Article  CAS  Google Scholar 

  21. Kumar A, Cecchini R, Locatelli L, Wiemer C, Martella C, Nasi L, Lazzarini L, Mantovan R, Longo M (2021) Large-area movpe growth of topological insulator Bi2Te3 epitaxial layers on i-Si (111). Cryst Growth Des 21:4023–4029

    Article  CAS  Google Scholar 

  22. Fu L, Kane CL (2007) Topological insulators with inversion symmetry. Phys Rev B 76:045302–045319

    Article  Google Scholar 

  23. Shchennikov VV, Ovsyannikov SV, Vorontsov GV, Kulbachinski VV (2010) High-pressure thermopower technique and its application. J Phys Conf Ser 215:012185–012191

    Article  Google Scholar 

  24. Jeffries JR, Lima Sharma AL, Sharma PA, Spataru CD, Mccall SK, Sugar D, Weir ST, Vohra YK (2011) Distinct superconducting states in the pressure-induced metallic structures of the nominal semimetal Bi4Te3. Phys Rev B 84:092505–092509

    Article  Google Scholar 

  25. Jacobsen MK, Kumar RS, Cornelius AL, Sinogeiken SV, Nico MF (2007) High-pressure x-ray diffraction studies of Bi2-xSbxTe3(x = 0.1.2). AIP Conf Proc 955:171–174

    CAS  Google Scholar 

  26. Vereshchagin LF, Ya Atabaeva E (1972) Investigation of the Bi2Te3 phase diagram at high temperatures and pressures. Sov Phys Solid State 13:2051–2053

  27. Iina MA, Itskevich ES (1972) Superconductivity of bismuth telluride. Sov Phys Solid State 13:2098–2100

    Google Scholar 

  28. Loa I, Bos JWG, Downie RA, Syassen K (2016) Atomic Ordering in Cubic Bismuth Telluride Alloy Phases at High Pressure. Phys Rev B 93:224109–224117

    Article  Google Scholar 

  29. Einaga M, Ohmura A, Nakayama A, Ishikawa F, Yamada Y, Nakano S (2011) Pressure-induced phase transition of Bi2Te3 to a bcc structure. Phys Rev B 83:092102–092106

    Article  Google Scholar 

  30. Nakayama A, Einaga M, Tanabe Y, Nakano S, Ishikawa F, Yamada Y (2009) Structural phase transition in Bi2Te3 under high pressure. High-Pressure Res 29:245–249

    Article  CAS  Google Scholar 

  31. Feutelais Y, Legendre B, Rodier N, Agafonov V (1993) A study of the phases in the bismuth-tellurium system. Mat Res Bull 28:591–596

    Article  CAS  Google Scholar 

  32. Hasanova GS, Aghazade AI, Imamaliyeva SZ, Yusibov YA, Babanly MB (2021) Refinement of the phase diagram of the Bi-Te system and the thermodynamic properties of lower bismuth tellurides. TMS 73:1511–1520

    CAS  Google Scholar 

  33. Korobeinikov IV, Morozova NV, Lukyanova LN, Usov OA, Ovsyannikov SV (2019) The studied alloys are used in modeling the thermoelectric module with adjustable mechanical stress applied to thermoelements. Semiconductors 53:732–736

    Article  CAS  Google Scholar 

  34. Kim JS, Juneja R, Salke NP, Palosz W, Swaminathan V, Trivedi S, Singh AK, Akinwande D, Lin JF (2018) Structural, vibrational, and electronic topological transitions of Bi1.5Sb0.5Te1.8Se1.2 under pressure. J Appl Phys 123:115903–115915

    Article  Google Scholar 

  35. Guler E, Guler M (2015) Theoretical prediction of the structural, elastic, mechanical, and phonon properties of bismuth telluride under pressure. Int J Mod Phys 29:1550222–1550232

    Article  Google Scholar 

  36. Einaga M, Ohmura A, Ishikawa F, Nakayama A, Yamada Y, Nakano S, Matsushita A, Shimizu K (2014) Pressure-induced superconductivity in non-stoichiometric bismuth telluride Bi35Te65. J Phys Conf Ser 500:192003–192008

    Article  Google Scholar 

  37. Su Z, Shaw WL, Miao YR, You S, Dlott DD, Suslicks KS (2017) Shock wave chemistry in a metal−organic framework. J Am Chem Soc 139:4619–4622

    Article  CAS  PubMed  Google Scholar 

  38. Jayaram V, Gupta A, Reddy KPJ (2014) Investigation of strong shock wave interactions with CeO2 ceramic. Journ Adv Ceramic 3:297–305

    Article  CAS  Google Scholar 

  39. Jayaram V, Reddy KPJ (2017) Experimental study of the effect of strong shock heated test gases with cubic zirconia. Adv Matt Lett 8:150–155

    Article  CAS  Google Scholar 

  40. Bosa JWG, Zandbergen HW, Lee MH, Ong NP, Cava RJ (2007) The structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n. Phys Rev B 75:195203–195236

    Article  Google Scholar 

  41. Siva Kumar A, Eniya P, Sahaya Jude Dhas S, Almansour AI, Suresh Kumar R, Arumugam N, Kalyana Sundar J, Chakraborty S, Martin Britto Dhas SA (2022) Switchable phase transition of crystalline to amorphous state of potassium nitrate single crystal. Surf Interfaces 35:102422–102447

    Article  CAS  Google Scholar 

  42. Sivakumar A, Sahaya Jude Dhas S, Saranraj A, Sankar R, Suresh Kumar R, Almansour AI, Kim I, Martin Britto Dhas SA (2022) Reversible disorder-order type structural phase transition of potassium dihydrogen phosphate bulk single crystals induced by dynamic shock waves. Phys B Condens matter 644:414233–414241

    Article  Google Scholar 

  43. Sivakumar A, Soundarya S, Sahaya Jude Dhas S, Kamala Bharathi K, Martin Britto Dhas SA (2020) Shock wave driven solid state phase transformation of Co3O4 to CoO nanoparticles. J Phys Chem C 124:10755–10763

    Article  CAS  Google Scholar 

  44. Sivakumar A, Kalaiarasi S, Sahaya Jude Dhas S, Sivaprakash P, Arumugam S, Jose M, Martin Britto Dhas SA (2022) Comparative assessment of crystallographic phase stability of anatase and rutile TiO2 at dynamic shock wave loaded conditions. J Inorg Organomet Polym 32:967–972

    Article  CAS  Google Scholar 

  45. Feutelais Y, Legendre B, Rodie N, Agafonov V (1993) A study of the phases in the bismuth-tellurium system. Mat Res Bull 28:591–596

    Article  CAS  Google Scholar 

  46. Hosokawa Y, Tomita K, Takashiri M (2019) Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis. Sci Rep 9:10790–10797

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mustapha S, Damitso MMN, Abdulkareem AS, Tijani JO, Shuaib DT, Mohammed AK, Sumaila A (2019) Comparative study of crystallite size using Williamson-Hall and Debye Scherrer plots for ZnO nanoparticles. Adv Nat Sci: Nanosci Nanotechnol 10:045013–045023

    Google Scholar 

  48. Vijaya Kumar T, Ramana KV (2019) An effect of ball milling on microstructural parameters of nanostructured MoO3-CuO-V2O5 composite nanopowders. Int J Mech Prod Eng Res Dev 9(3):131–142

    Google Scholar 

  49. Alderton D, Holloway R (2020) Department of earth science. X-ray diffraction (XRD). Elsevier. Vol 5, pp 1–12

  50. Jule LT, Dejene FB, Ali AG, Roro KT, Hegazy A, Allam NK, El Shenawy E (2016) Wide visible emission and narrowing band gap in Cd-doped ZnO nanopowders synthesized via sol-gel route. J Alloy Compd 687:920–926

    Article  CAS  Google Scholar 

  51. Mayahi R, Shokuhfar A, Reza Vaezi M (2019) Microstructure and thermodynamic analysis of nanostructured Cu-13.2%Al-4%Ni ternary system synthesized by mechanical alloying. Metall Res Technol 116:628–638

    Article  CAS  Google Scholar 

  52. Zhu H, Zhao C, Nan P, Jiang XM, Zhao J, Ge B, Xiao C, Xie Y (2021) Intrinsically low lattice thermal conductivity in natural superlattice (Bi2)m(Bi2Te3)n thermoelectric materials. Chem Mater 33:1140–1148

    Article  CAS  Google Scholar 

  53. Steiner H, Volobuev V, Caha O, Bauer G, Springholz G, Holy V (2014) Structure and composition of bismuth telluride topological insulators grown by molecular beam epitaxy. J Appl Cryst 47:1–12

    Article  Google Scholar 

  54. Park S, Ryu B, Park S (2021) Structural analysis, phase stability, electronic band structures, and electric transport types of (Bi2) m(Bi2Te3)n by density functional theory calculations. Appl Sci 11:11341–11357

    Article  CAS  Google Scholar 

  55. Liu S, Shen Y, Zhang Y, Cui B, Xi S, Zhang J, Xu L, Zhu S, Chen Y, Deng Y, Hu W (2022) Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv Mater 13:2106973–2106983

    Article  Google Scholar 

  56. Hun Lee S, Park C, Woo Park J, Jeong Kim S, Soon Im S, Ahn H (2019) Synthesis of conducting polymer-intercalated vanadate nanofiber composites using a sonochemical method for high-performance pseudo capacitor applications. J Power Source 414:460–469

    Article  Google Scholar 

  57. Teweldebrhan D, Goyal V, Balandin AA (2010) Exfoliation, and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett 10:1209–1218

    Article  CAS  PubMed  Google Scholar 

  58. Morelhao SL, Kycia S, Netzke S, Fornari CI, Rappl PHO, Abramof E (2019) Dynamic of defects in van der waals epitaxy of bismuth telluride topological insulators. J Phys Chem C 123:2418–24825

    Article  Google Scholar 

  59. Le Huu P, Neng Liao C, Luo C, Leu J (2014) Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition. J Alloys Compd 615:546–552

    Article  Google Scholar 

  60. Sun Y, Wang L, Liu Y, Ren Y (2015) Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly. Small 11:300–306

    Article  CAS  PubMed  Google Scholar 

  61. Fang Y, Zhang L, Yu Y, Yang X, Wang K, Zou B (2021) Manipulating emission enhancement and piezochromism in two- dimensional organic-inorganic halide perovskite [(HO)(CH2)2NH3)]2PbI4 by High Pressure. CCS Chemistry 3:2203–2210

    Article  CAS  Google Scholar 

  62. Shahil KMF, Hossain MZ, Goyal V, Balandin AA (2012) Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb2Te3 Materials. J Appl Phys 111:054305–054323

    Article  Google Scholar 

  63. Yu PY, Cardona M (2005) Fundamentals of semiconductors-physics and materials properties, 3rd edn. Springer, Heidelberg, pp 1–650

    Google Scholar 

  64. Singha P, Das S, Kulbachinskii VA, Kytin VG, Apreleva AS, Voneshen DJ, Guidi T, Anthony VP, Chatterjee S, Deb AK, Bandyopadhyay S, Banerjee, (2021) Evidence of improvement in thermoelectric parameters of n-type Bi2Te3/graphite nanocomposite. J Appl Phys 129:055108–055122

    Article  CAS  Google Scholar 

  65. Rodrigues Junior G, Marcal LAB, Ribeiro GAS, De Oliveira Rappl PH, Abramof E, Vitor Sciammarella P, De Moura GL, Alberto Perez C, Malachias A (2020) Direct observation of large strain through van der Waals gaps on epitaxial Bi2Te3/graphite: pseudomorphic relaxation and the role of Bi2 layers on the BixTey topological insulator series. Phys Rev Mater 4:023602–023612

    Article  CAS  Google Scholar 

  66. Mousavi M, Ghasemian MB, Han J, Wang Y, Abbasi R, Yang J, Tang J, Idrus Saidi SA, Guan X, Christie MJ, Merhebi S, Zhang C, Tang J, Jalili R, Daeneke T, Wu T, Kalantar Zadeh K, Mayyas M (2021) Bismuth telluride topological insulator synthesized using liquid metal alloys: Test of NO2 selective sensing. Appl Mater Today 22:100954–100964

    Article  Google Scholar 

  67. Zheng ZH, Fan P, Chen TB, Cai ZK, Liu PJ, Liang GX, Zhang DP, Cai XM (2012) Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition. Thin Solid Films 520:5245–5248

    Article  CAS  Google Scholar 

  68. Concepcion O, Galvan Arellano M, Torres Costa V, Climent Font A, Bahena D, Manso Silvan M, Escobosa A, De Melo O (2018) Controlling the epitaxial growth of Bi2Te3, BiTe, and Bi4Te3 pure phases by physical vapor transport. Inorg Chem 57:10090–10099

    Article  CAS  PubMed  Google Scholar 

  69. Sivakumar A, Eniya P, Sahaya Jude Dhas S, Jose M, Suresh Kumar R, Kalyana Sundar J, Martin Britto Dhas SA (2022) A Comparative investigation on the structural stability of the single and poly-crystalline sodium nitrate at dynamic shock wave loaded conditions. Cryst Res Technol 57:2200042–2200064

    Article  CAS  Google Scholar 

  70. Sivakumar A, Sahaya Jude Dhas S, Sivaprakash P, Suresh Kumar R, Almansour AI, Perumal K, Arumugam S, Martin Britto Dhas SA (2022) Shock wave induced reversible phase transition from crystalline to semi-crystalline states of lithium sulfate monohydrate. J Solid State Chem 307:122859–122868

    Article  CAS  Google Scholar 

  71. Chen L, Zhao Q, Ruan X (2012) Facile synthesis of ultra-small Bi2Te3 nanoparticles, nanorods and nanoplates, and their morphology-dependent Raman spectroscopy. Mater Lett 82:112–115

    Article  CAS  Google Scholar 

  72. Yu Zhang J, Yong Wang X, Xiao M, Qu L, Peng X (2022) Lattice contraction in free-standing CdSe nanocrystals. Appl Phys Lett 81:2076–2078

    Article  Google Scholar 

  73. Park D, Park S, Jeong K, Sik Jeong H, Yong Song J, Ho Cho M (2016) Thermal and electrical conduction of single-crystal Bi2Te3 nanostructures grown using one-step process. Sci Rep 6:19132–19141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Singh R, Kambale K, Kulkarni AR, Harendra Nath CS (2013) Structure composition correlation in KNN-BT ceramics e An X-ray diffraction and Raman spectroscopic investigation. Mater Chem Phys 138:905–908

    Article  CAS  Google Scholar 

  75. Gu MX, Pan LK, Tay BK, Sun CQ (2007) Atomistic origin and temperature dependence of Raman optical redshift in nanostructures: a broken bond rule. J Raman Spectrosc 38:780–788

    Article  CAS  Google Scholar 

  76. Puri N, Raj Gupta K, Mehra NC, Tandon RP, Mahapatro AK (2017) Neodymium doped bismuth telluride alloys using the chemical reflux method for thermoelectric application. Integr Ferroelectr 184:9–14

    Article  CAS  Google Scholar 

  77. Rashad MM, El Dissouky E, Soliman HM, Elseman AM, Refaat HM, Ebrahim A (2018) Structure evaluation of bismuth telluride (Bi2Te3) nanoparticles with enhanced Seebeck coefficient and low thermal conductivity. Mater Res Innov 22:315–323

    CAS  Google Scholar 

  78. Rani K, Gupta V, Pandey RA (2023) Improved thermoelectric performance of Se-doped n-type nanostructured Bi2Te3. J Mater Sci: Mater Electron 34:1074–1091

    CAS  Google Scholar 

  79. Ruhul Amin Bhuiyan M, Mamur H (2019) Bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. ISVOS Journal 3:1–7

    Google Scholar 

  80. Wang F, Tan M, Li C, Niu C, Zhao X (2019) Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles. Org Electron 67:89–94

    Article  CAS  Google Scholar 

  81. Gao K, Kan Y, Chen X, Liu F, Kan B, Nian L, Wan X, Chen Y, Peng X, Russel TP, Cao Y, Jen AKY (2020) Low-bandgap porphyrins for highly efficient organic solar cells: materials, morphology, and applications. Adv Mater 32:1906129–1906177

    Article  CAS  Google Scholar 

  82. Sreekumar R, Jayakrishnan R, Sudha Kartha C, Vijayakumar KP, Khan SA, Avasthi DK (2008) Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation. J Appl Phys 103:023709–023719

    Article  Google Scholar 

  83. Sivakumar A, Saranraj A, Sahaya Jude Dhas S, Jose M, Martin Britto Dhas SA (2019) Shock wave-induced defect engineering for investigation on optical properties of triglycine sulfate. Opt Eng 58:077104–077114

    Google Scholar 

  84. Hu C, Zeng X, Cui J, Chen H, Lu J (2013) Size effects of Raman and photoluminescence spectra of CdS nanobelts. J Phys Chem C 117:20998–21005

    Article  CAS  Google Scholar 

  85. Jons KD, Hafenbrak R, Singh R, Ding F, Plumhof JD, Rastelli A, Schmidt OG, Bester G, Michler P (2011) Dependence of the redshifted and blue shifted photoluminescence spectra of single InxGa1-xAs/GaAs quantum dots on the applied uniaxial stress. PRL 107:217402–217408

    Article  CAS  Google Scholar 

  86. Suchikova JA, Kidalov VV, Sukach GA (2010) Blue shift of photoluminescence spectrum of porous InP. ECS Trans 25:59–64

    Article  CAS  Google Scholar 

  87. Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Blue luminescence of ZnO nanoparticles based on non-equilibrium processes defect origins and emission controls. Adv Funct Mater 20:561–572

    Article  CAS  Google Scholar 

  88. Amarsingh Bhabu K, Theerthagiri J, Madhavan J, Balu T, Muralidharan G, Rajasekaran TR (2016) Enhanced electrochemical behavior of ceria-based zirconia electrolytes for intermediate temperature solid oxide fuel cell applications. J Mater Sci: Mater Electron 27:10980–10992

    Google Scholar 

  89. Jing X, Zhou D, Sun R, Zhang Y, Li Y, Li X, Li Q, Song H, Liu B (2021) Enhanced photoluminescence and photo responsiveness of Eu3+ Ions-doped CsPbCl3 perovskite quantum dots under high pressure. Adv Funct Mater 31:2100930–2100940

    Article  CAS  Google Scholar 

  90. Rita A, Sivakumar A, Sahaya Jude Dhas S, Martin Britto Dhas SA (2020) Structural, optical, and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J Nanostructure Chem 10:309–316

    Article  Google Scholar 

  91. Amal MI, Wibowo JT, Nuraini L, Senopati G, Hasbi MY, Priyotomo G (2019) Antibacterial activity of copper oxide nanoparticles prepared by mechanical milling. Mater Sci Eng 578:012039–012047

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Abraham Panampara Research Fellowship (APRF). This research was supported by the Brain Pool program funded by the Ministry of Science and ICT (MSIT) through the National Research Foundation of Korea (RS-2023-00219593) and through the NRF funded by the MSIT grant No. 2022R1C1C1006414. Also, this project was supported by the Researchers Supporting Project number (RSP2024R142), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

FIMB contributed to data analysis and writing—original draft; SO contributed to data analysis; RSK and PK contributed to formal analysis; IK contributed to analysis and resources; SAMBD contributed to investigation and writing—review and editing.

Corresponding authors

Correspondence to Ikhyun kim or S. A. Martin Britto Dhas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

None.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bincy, F.I.M., Oviya, S., Kumar, R.S. et al. Acoustic shock wave-induced reversible phase transition (rhombohedral to hexagonal) of bismuth telluride. J Mater Sci 59, 7044–7059 (2024). https://doi.org/10.1007/s10853-024-09574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09574-9

Navigation