Skip to main content
Log in

High-resolution electron microscopy study of particle dispersion and precipitation in a nanostructured Al–2%Fe alloy

  • Processing Bulk Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al–Fe alloys have drawn attention of researchers for many decades since Fe is the most common impurity in Al that, because of its low solid solubility, forms brittle aluminides that affect the mechanical properties. Thus, it is interesting to provide microstructure control of these intermetallics and achieve high strength, thermal stability, and high electrical conductivity. High-pressure torsion (HPT) has been applied to an Al–2%Fe alloy with two different eutectic phases containing Al6Fe and Al3Fe intermetallics, to refine, disperse and partially dissolve them. The microstructure after HPT processing at different levels of imposed strain was observed using aberration-corrected high-resolution scanning/transmission electron microscopy (HR-S/TEM) to perform a detailed analysis of the dispersion of intermetallic phases and their orientation relationships with the Al matrix. The precipitates from the supersaturated solid solution achieved by post HPT aging, responsible for age-hardening were also studied in detail. Fragmentation of secondary Al3Fe and Al6Fe phases occurs down to sizes in the nano-scale and a fine dispersion of particles with coherency with the matrix in lattice planes with similar spacing (low misfit strain) was observed even after high straining by HPT. Semi-coherent Al6Fe is the dominant precipitate in the peak-aged condition and phase transformation of the particles from Al6Fe to Al3Fe occurs with aging. The Al3Fe particles loose coherency as they grow in size. It was possible to explain the age hardening effect with respect to the coherency and orientation relationship of the Fe-containing particles in the nano-scale, by a similar mechanism for Al alloys with miscible elements, which has not been reported for ultrafine-grained Al–Fe alloys to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data in the form of microscopy images and mechanical property data will be made available by direct request to the corresponding author.

References

  1. Totten GE, MacKenzie DS (eds) (2003) Handbook of aluminium: physical metallurgy and processes, vol 1. Marcel Dekker Inc., New York

    Google Scholar 

  2. Guan R, Shen Y, Zhao Z, Wang X (2017) A high-strength, ductile Al–0.35Sc–0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates. J Mater Sci Tech 33(3):215–223. https://doi.org/10.1016/j.jmst.2017.01.017

    Article  CAS  Google Scholar 

  3. González-Hernández JE, Cubero-Sesin JM (2023) Electrical conductivity of ultrafine-grained Cu and Al alloys: attaining the best compromise with mechanical properties. Mater Trans 64(8):1754–1768. https://doi.org/10.2320/matertrans.MT-MF2022046

    Article  Google Scholar 

  4. Adam CM, Hogan LM (1972) The Al–Fe eutectic system. J Aust Inst Met 17(2):81–90

    CAS  Google Scholar 

  5. Adam CM, Hogan LM (1975) Crystallography of the Al–Al3Fe eutectic. Acta Metall 23(3):345–354. https://doi.org/10.1016/0001-6160(75)90127-3

    Article  CAS  Google Scholar 

  6. Hughes IR, Jones H (1976) Coupled eutectic growth in Al–Fe alloys: part 1—effects of high growth velocity. J Mater Sci 11:1781–1793. https://doi.org/10.1007/BF00708256

    Article  CAS  Google Scholar 

  7. Hughes IR, Jones H (1977) Coupled eutectic growth in Al–Fe alloys: part 2—thermal stability of the Al–Al6Fe eutectic. J Mater Sci 12:323–333. https://doi.org/10.1007/BF00566274

    Article  CAS  Google Scholar 

  8. Young RMK, Clyne TW (1981) An Al–Fe intermetallic phase formed during controlled solidification. Scr Metall 15(11):1211–1216. https://doi.org/10.1016/0036-9748(81)90301-X

    Article  CAS  Google Scholar 

  9. Skjerpe P (1987) Intermetallic phases formed during DC-casting of an Al–0.25 Wt Pct Fe–0.13 Wt Pct Si alloy. Metall Mater Trans A 18:189–200. https://doi.org/10.1007/BF02646153

    Article  Google Scholar 

  10. Adam CM, Eady JA (1979) The deformation behaviour of Al–Al6Fe eutectic alloys. Acta Metall 27:79–87. https://doi.org/10.1016/0001-6160(79)90058-0

    Article  CAS  Google Scholar 

  11. Strid J, Porter DA, Easterling KE (1985) Microstructure and plasticity of an Al–Al6Fe directionally solidified eutectic alloy. Mater Sci Tech 1:161–166. https://doi.org/10.1179/mst.1985.1.2.161

    Article  CAS  Google Scholar 

  12. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315. https://doi.org/10.1016/0079-6425(89)90001-7

    Article  CAS  Google Scholar 

  13. Mukhopadhyay DK, Suryanarayana C, Froes FH (1994) Synthesis of nanocrystalline Al5Fe2 by mechanical alloying. Scr Metall Mater 31:333–338. https://doi.org/10.1016/0956-716X(94)90292-5

    Article  CAS  Google Scholar 

  14. Mukhopadhyay DK, Suryanarayana C, Froes FH (1995) Structural evolution in mechanically alloyed Al-Fe powders. Metall Mater Trans A 26:1939–1946. https://doi.org/10.1007/BF02670665

    Article  Google Scholar 

  15. Cardellini F, Contini V, Mazzone G (1996) Solid-state reactions in the Al–Fe system induced by ball milling of elemental powders. J Mater Sci 31:4175–4180. https://doi.org/10.1007/BF00356436

    Article  CAS  Google Scholar 

  16. Cardellini F, Contini V, Gupta R, Mazzone G, Montone A, Perin A, Principi G (1998) Microstructural evolution of Al–Fe powder mixtures during high-energy ball milling. J Mater Sci 33:2519–2527. https://doi.org/10.1023/A:1004388732126

    Article  CAS  Google Scholar 

  17. Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538. https://doi.org/10.1016/j.actamat.2009.04.012

    Article  CAS  Google Scholar 

  18. Nayak SS, Wollgarten M, Banhart J, Pabi SK, Murty BS (2010) Nanocomposites and an extremely hard nanocrystalline intermetallic of Al–Fe alloys prepared by mechanical alloying. Mater Sci Eng A 527:2370–2378. https://doi.org/10.1016/j.msea.2009.12.044

    Article  CAS  Google Scholar 

  19. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189. https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  20. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM J Min Met Mater Sci 58:33–39. https://doi.org/10.1007/s11837-006-0213-7

    Article  Google Scholar 

  21. Zehetbauer MJ, Zhu YT (2009) Bulk nanostructured materials. Wiley, Weinheim

    Book  Google Scholar 

  22. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61(3):782–817. https://doi.org/10.1016/j.actamat.2012.10.038

    Article  CAS  Google Scholar 

  23. Valiev RZ, Zhilyaev AP, Langdon TG (2014) Bulk nanostructured materials: fundamentals and applications. TMS Wiley, New York

    Google Scholar 

  24. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2016) Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM J Min Met Mater Sci 68:1216–1226. https://doi.org/10.1007/s11837-016-1820-6

    Article  CAS  Google Scholar 

  25. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002

    Article  CAS  Google Scholar 

  26. Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A 652:325–352. https://doi.org/10.1016/j.msea.2015.11.074

    Article  CAS  Google Scholar 

  27. Sabirov I, Murashkin MY, Valiev RZ (2013) Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. Mater Sci Eng A 560:1–24. https://doi.org/10.1016/j.msea.2012.09.020

    Article  CAS  Google Scholar 

  28. Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Microstructure and microhardness of an Al–Fe alloy subjected to severe plastic deformation and aging. Nanostruct Mater 10:691–698. https://doi.org/10.1016/S0965-9773(98)00107-X

    Article  CAS  Google Scholar 

  29. Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Microstructure of aluminum–iron alloys subjected to severe plastic deformation. Scripta Mater 38:1511–1516. https://doi.org/10.1016/S1359-6462(98)00073-6

    Article  CAS  Google Scholar 

  30. Kaloshkin SD, Tcherdyntsev VV, Tomilin IA, Gunderov DV, Stolyarov VV, Baldokhin YV, Brodova IG, Shelekhov EV (2002) Composed phases and microhardness of aluminium-rich aluminium-iron alloys obtained by rapid quenching, mechanical alloying and high pressure torsion deformation. Mater Trans 43:2031–2038. https://doi.org/10.2320/matertrans.43.2031

    Article  CAS  Google Scholar 

  31. Tcherdyntsev VV, Kaloshkin SD, Afonina E, Tomilin I, Baldokhin YV, Shelekhov EV, Gunderov DV, Brodova IG, Stolyarov VV (2003) Effect of deformation by high pressure torsion on the phase composition and microhardness of mechanically alloyed and rapidly quenched Al–Fe alloys. Defect Differ Forum 216:313–322. https://doi.org/10.4028/www.scientific.net/DDF.216-217.313

    Article  Google Scholar 

  32. Tcherdyntsev VV, Gunderov DV, Afonina EA, Brodova IG, Stolyarov VV, Baldokhin YV, Shelekhov EV, Tomilin IA (2004) Phase composition and microhardness of rapidly quenched Al–Fe alloys after high pressure torsion deformation. Mater Sci Eng A 375–377:888–893. https://doi.org/10.1016/j.msea.2003.10.207

    Article  CAS  Google Scholar 

  33. Brodova IG, Bashlykov DV, Shirinkina IG, Lennikova IP (2006) Formation of supersaturated solid solutions in Al alloys with transition metals upon shear under pressure. Mater Sci Forum 503–504:413–418. https://doi.org/10.4028/www.scientific.net/MSF.503-504.413

    Article  Google Scholar 

  34. Shabashov VA, Brodova IG, Mukoseev AG, Sagaradze VV, Litvinov AV (2007) Deformation-induced phase transformations in the Al–Fe system under intensive plastic deformation. J Phys Condens Mater 19:386222. https://doi.org/10.1088/0953-8984/19/38/386222

    Article  CAS  Google Scholar 

  35. Cubero-Sesin JM, Horita Z (2012) Powder consolidation of Al–10 wt% Fe alloy by high-pressure torsion. Mater Sci Eng A 558:462–471. https://doi.org/10.1016/j.msea.2012.08.029

    Article  CAS  Google Scholar 

  36. Cubero-Sesin JM, Horita Z (2012) Mechanical properties and microstructures of Al–Fe alloys processed by high-pressure torsion. Metall Mater Trans A 43:5182–5192. https://doi.org/10.1007/s11661-012-1341-z

    Article  CAS  Google Scholar 

  37. Cubero-Sesin JM, Horita Z (2012) Strengthening via microstructure refinement in bulk Al–4 mass% Fe alloy using high-pressure torsion. Mater Trans 53:46–55. https://doi.org/10.2320/matertrans.MD201127

    Article  CAS  Google Scholar 

  38. Cubero-Sesin JM, Horita Z (2013) Strengthening of Al through addition of Fe and by processing with high-pressure torsion. J Mater Sci 48:4713–4722. https://doi.org/10.1007/s10853-012-6935-8

    Article  CAS  Google Scholar 

  39. Cubero-Sesin JM, Horita Z (2015) Age hardening in ultrafine-grained Al-2 Pct Fe alloy processed by high-pressure torsion. Metall Mater Trans A 46:2614–2624. https://doi.org/10.1007/s11661-015-2876-6

    Article  CAS  Google Scholar 

  40. Cubero-Sesin JM, Arita M, Horita Z (2015) High strength and electrical conductivity of Al–Fe alloys produced by synergistic combination of high-pressure torsion and aging. Adv Eng Mater 17:1792–1803. https://doi.org/10.1002/adem.201500103

    Article  CAS  Google Scholar 

  41. Cubero-Sesin JM, In H, Arita M, Iwaoka H, Horita Z (2014) High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. J Mater Sci 49:6550–6557. https://doi.org/10.1007/s10853-014-8240-1

    Article  CAS  Google Scholar 

  42. Medvedev AE, Murashkin MY, Enikeev NA, Valiev RZ, Hodgson PD, Lapovok R (2018) Optimization of strength-electrical conductivity properties in Al–2Fe alloy by severe plastic deformation and heat treatment. Adv Eng Mater 20:1700867. https://doi.org/10.1002/adem.201700867

    Article  CAS  Google Scholar 

  43. Duchaussoy A, Sauvage X, Edalati K, Horita Z, Renou G, Deschamps A, Geuser F (2019) Structure and mechanical behavior of ultrafine-grained aluminum–iron alloy stabilized by nanoscaled intermetallic particles. Acta Mater 167:89–102. https://doi.org/10.1016/j.actamat.2019.01.027

    Article  CAS  Google Scholar 

  44. Medvedev AE, Murashkin M, Enikeev N, Medvedev E, Sauvage X (2021) Influence of morphology of intermetallic particles on the microstructure and properties evolution in severely deformed Al–Fe alloys. Metals 11(5):815. https://doi.org/10.3390/met11050815

    Article  CAS  Google Scholar 

  45. Masuda T, Hirosawa S, Horita Z (2021) Continuous high-pressure torsion of pure Al and Al–2 wt% Fe alloy using multi-wires. J Mater Sci 56:8679–8688. https://doi.org/10.1007/s10853-020-05484-8

    Article  CAS  Google Scholar 

  46. Medvedev AE, Zhukova OO, Kazykhanov VU, Shaikhulova AF, Enikeev NA, Timofeev VN, Murashkin MY (2022) On the effect of ECAP and subsequent cold rolling on the microstructure and properties of electromagnetically cast Al–Fe alloys. Int J Lightweight Mater Manuf 5(4):484–495. https://doi.org/10.1016/j.ijlmm.2022.06.001

    Article  CAS  Google Scholar 

  47. Medvedev AE, Zhukova O, Enikeev N, Kazykhanov V, Timofeev V, Murashkin M (2023) The effect of casting technique and severe straining on the microstructure, electrical conductivity, mechanical properties and thermal stability of the Al–1.7 wt% Fe alloy. Materials 16(8):3067. https://doi.org/10.3390/ma16083067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum Press, New York

    Book  Google Scholar 

  49. Belov NA, Aksenov AA, Eskin DG (2002) Iron in aluminum alloys: impurity and alloying element. Taylor & Francis, London

    Book  Google Scholar 

  50. Skjerpe P (1988) Structure of AlmFe. Acta Crystallogr B 44:480–486. https://doi.org/10.1107/S0108768188005245

    Article  Google Scholar 

  51. Walford LK (1965) The structure of the intermetallic phase FeAl6. Acta Crystallogr 18:287–291. https://doi.org/10.1107/S0365110X65000610

    Article  CAS  Google Scholar 

  52. Black PJ (1955) The structure of FeAl3. I Acta Crystallogr 8:43–48. https://doi.org/10.1107/s0365110x5500011x

    Article  CAS  Google Scholar 

  53. Black PJ (1955) The structure of FeAl3. I Acta Crystallogr 8:175–182. https://doi.org/10.1107/s0365110x55000637

    Article  CAS  Google Scholar 

  54. Liu P, Dunlop L (1988) Crystallographic orientation relationships for Al–Fe and Al–Fe–Si precipitates in aluminium. Acta Metall 36:1481–1489. https://doi.org/10.1016/0001-6160(88)90215-5

    Article  CAS  Google Scholar 

  55. Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ (2012) Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng A 540:1–12. https://doi.org/10.1016/j.msea.2012.01.080

    Article  CAS  Google Scholar 

  56. Koch CC (2003) Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Mater 49:657–662. https://doi.org/10.1016/S1359-6462(03)00394-4

    Article  CAS  Google Scholar 

  57. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater 18(17):2280–2283. https://doi.org/10.1002/adma.200600310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out as a part of a materials development program in the Japan Aluminum Association. The authors recognize Dr. Q. He and Mr. A. Wade for their cooperation with the electron microscopy in Lehigh University. This work was supported in part by the Light Metals Educational Foundation of Japan, and in part by a Grant-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. JP19H00830). One of the authors (JC) thanks Vicerrectoría de Investigación y Extensión, Instituto Tecnológico de Costa Rica for support through grant VIE-CF-1490033.

Author information

Authors and Affiliations

Authors

Contributions

Jorge M. Cubero-Sesin: conceptualization, methodology, validation, writing paper. Masashi Watanabe: conceptualization, methodology, validation, writing paper. Zenji Horita: conceptualization, methodology, validation, writing paper.

Corresponding author

Correspondence to Jorge M. Cubero-Sesin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or known competing interests that could have influenced the work reported in this paper.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cubero-Sesin, J.M., Watanabe, M. & Horita, Z. High-resolution electron microscopy study of particle dispersion and precipitation in a nanostructured Al–2%Fe alloy. J Mater Sci 59, 5787–5804 (2024). https://doi.org/10.1007/s10853-024-09570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09570-z

Navigation