Skip to main content
Log in

Interfacial design and damage of fiber-reinforced polymer composites/strengthening concrete: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fiber-reinforced polymer (FRP) composites are widely used to reinforce and repair buildings due to their high strength, corrosion resistance, lightweight, and convenient of construction. The interfacial properties between FRP and the reinforced buildings play a very important role in the effective transfer of stress and largely determine the service hours of the reinforced structures. Therefore, this paper reviews the research progress on the interfacial properties of FRP reinforced concrete. First, the composition of FRP reinforcement system is introduced. EB-FRP and NSM-FRP reinforcement methods are suitable for reinforcing different buildings. Then, the influence factors of the interfacial properties are highlighted. The choice of interfacial agent, roughness of the reinforced concrete surface, temperature and environment have very important impact on the reinforcement effect. Finally, the main damage modes and failure mechanisms of the interface between FRP and the reinforced concrete are summarized. The choice of the interfacial agent determines the main failure mode. This paper provides a theoretical basis for the further research on the interface damage mechanism of FRP reinforced concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Frangopol DM, Saydam D, Kim S (2012) Maintenance, management, life-cycle design and performance of structures and infrastructures: a brief review. Struct Infrastruct Eng 8(1):1–25

    Article  Google Scholar 

  2. Kare V, Nayak C, Jagadale U, Deulkar W (2020) Earthquake response of 3d frames with Strap footing considering soil structure interactıon. In: Techno-Societal, p 895–904

  3. Minafò G, Cucchiara C, Monaco A, La Mendola L (2017) Effect of FRP strengthening on the flexural behaviour of calcarenite masonry walls. Bull Earthq Eng 15(9):3777–3795

    Article  Google Scholar 

  4. Saini A, Prakash SS (2021) Analytical study on the effectiveness of hybrid FRP strengthening on behaviour of slender reinforced concrete square columns. Structures 33:4218–4242

    Article  Google Scholar 

  5. Jagadale UT, Nayak CB, Mankar A, Thakare SB, Deulkar WN (2020) An experimental-based python programming for structural health monitoring of non-engineered RC frame. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-020-0260-x

    Article  Google Scholar 

  6. Abbasloo A, Maheri MR (2018) On the mechanisms of modal damping in FRP/honeycomb sandwich panels. Sci Eng Compos Mater 25(4):649–660

    Article  CAS  Google Scholar 

  7. Jiang X, Kolstein MH, Bijlaard FSK (2013) Study on mechanical behaviors of FRP-to-steel adhesively-bonded joint under tensile loading. Compos Struct 98:192–201

    Article  Google Scholar 

  8. Al-Saidy AH, Al-Harthy AS, Al-Jabri KS, Abdul-Halim M, Al-Shidi NM (2010) Structural performance of corroded RC beams repaired with CFRP sheets. Compos Struct 92(8):1931–1938

    Article  Google Scholar 

  9. Siddika A, Mamun MAA, Alyousef R, Amran YHM (2019) Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: a review. J Build Eng 25:100798

    Article  Google Scholar 

  10. Chen GM, Li SW, Fernando D, Liu PC, Chen JF (2017) Full-range FRP failure behaviour in RC beams shear-strengthened with FRP wraps. Int J Solids Struct 125:1–21

    Article  Google Scholar 

  11. Billon-Filiot A, Taillade F, Quiertant M, Henault JM, Renaud JC, Maurin R et al (2020) Development of an innovative non-destructive and field-oriented method to quantify the bond quality of composite strengthening systems on concrete structures. Materials 13(23):5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. López-González JC, Fernández-Gómez J, González-Valle E (2012) Effect of adhesive thickness and concrete strength on FRP-concrete bonds. J Compos Constr 16(6):705–711

    Article  Google Scholar 

  13. Carloni C, Subramaniam KV, Savoia M, Mazzotti C (2012) Experimental determination of FRP–concrete cohesive interface properties under fatigue loading. Compos Struct 94(4):1288–1296

    Article  Google Scholar 

  14. Davalos JF, Chen Y, Ray I (2008) Effect of FRP bar degradation on interface bond with high strength concrete. Cem Concr Compos 30(8):722–730

    Article  CAS  Google Scholar 

  15. Shrestha J, Ueda T, Zhang D (2015) Durability of FRP concrete bonds and its constituent properties under the influence of moisture conditions. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001093

    Article  Google Scholar 

  16. Tatar J, Milev S (2021) Durability of externally bonded fiber-reinforced polymer composites in concrete structures: a critical review. Polymers 13(5):765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YL, Guo XY, Shu SYH, Guo YC, Qin XM (2020) Effect of salt solution wet-dry cycling on the bond behavior of FRP-concrete interface. Constr Build Mater 254:119317

    Article  CAS  Google Scholar 

  18. Xie J-H, Wei M-W, Huang P-Y, Zhang H, Chen P-S (2019) Fatigue behavior of the basalt fiber-reinforced polymer/concrete interface under wet-dry cycling in a marine environment. Constr Build Mater 228:117065

    Article  CAS  Google Scholar 

  19. Ahmed A, Zillur Rahman M, Ou Y, Liu S, Mobasher B, Guo S et al (2021) A review on the tensile behavior of fiber-reinforced polymer composites under varying strain rates and temperatures. Constr Build Mater 294:123565

    Article  CAS  Google Scholar 

  20. Al-Saadi NTK, Mohammed A, Al-Mahaidi R, Sanjayan J (2019) A state-of-the-art review: near-surface mounted FRP composites for reinforced concrete structures. Constr Build Mater 209:748–769

    Article  Google Scholar 

  21. Ombres L, Mancuso N, Mazzuca S, Verre S (2019) Bond between carbon fabric-reinforced cementitious matrix and masonry substrate. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002561

    Article  Google Scholar 

  22. Iucolano F, Liguori B, Colella C (2013) Fibre-reinforced lime-based mortars: a possible resource for ancient masonry restoration. Constr Build Mater 38:785–789

    Article  Google Scholar 

  23. Nayak CB (2021) Experimental and numerical investigation on compressive and flexural behavior of structural steel tubular beams strengthened with AFRP composites. J King Saud Univ Eng Sci 33(2):88–94

    Google Scholar 

  24. Anwarul Islam AKM (2009) Effective methods of using CFRP bars in shear strengthening of concrete girders. Eng Struct 31(3):709–714

    Article  Google Scholar 

  25. Tran CTN, Nguyen XH, Nguyen HC, Le DD (2021) Shear performance of short-span FRP-reinforced concrete beams strengthened with CFRP and TRC. Eng Struct 242:112548

    Article  Google Scholar 

  26. Wang H, Sun X, Peng G, Luo Y, Ying Q (2015) Experimental study on bond behaviour between BFRP bar and engineered cementitious composite. Constr Build Mater 95:448–456

    Article  Google Scholar 

  27. Al-Hamrani A, Alnahhal W (2021) Shear behavior of basalt FRC beams reinforced with basalt FRP bars and glass FRP stirrups: Experimental and analytical investigations. Eng Struct 242:112612

    Article  Google Scholar 

  28. Diab HM, Farghal OA (2014) Bond strength and effective bond length of FRP sheets/plates bonded to concrete considering the type of adhesive layer. Compos B Eng 58:618–624

    Article  CAS  Google Scholar 

  29. Yan L (2015) Plain concrete cylinders and beams externally strengthened with natural flax fabric reinforced epoxy composites. Mater Struct 49(6):2083–2095

    Article  Google Scholar 

  30. Tang W, Liu Z, Lu Y, Li S (2022) Hybrid confinement mechanism of large-small rupture strain FRP on concrete cylinder. J Build Eng 51:104335

    Article  Google Scholar 

  31. Padanattil A, Lakshmanan M, Jayanarayanan K, Mini KM (2018) Strengthening of plain concrete cylinders with natural FRP composite systems. Iran J Sci Technol Trans Civ Eng 43(3):381–389

    Article  Google Scholar 

  32. Zhang K, Zhang Q, Xiao J (2022) Durability of FRP bars and FRP bar reinforced seawater sea sand concrete structures in marine environments. Constr Build Mater 350:128898

    Article  CAS  Google Scholar 

  33. Chellapandian M, Prakash SS (2018) Rapid repair of severely damaged reinforced concrete columns under combined axial compression and flexure: an experimental study. Constr Build Mater 173:368–380

    Article  Google Scholar 

  34. Maheswaran J, Chellapandian M, Arunachelam N (2022) Retrofitting of severely damaged reinforced concrete members using fiber reinforced polymers: a comprehensive review. Structures 38:1257–1276

    Article  Google Scholar 

  35. Mofidi A, Chaallal O, Benmokrane B, Neale K (2012) Performance of end-anchorage systems for RC beams strengthened in shear with epoxy-bonded FRP. J Compos Constr 16(3):322–331

    Article  Google Scholar 

  36. Rizzo A, De Lorenzis L (2009) Behavior and capacity of RC beams strengthened in shear with NSM FRP reinforcement. Constr Build Mater 23(4):1555–1567

    Article  Google Scholar 

  37. Ceroni F, Pecce M, Bilotta A, Nigro E (2012) Bond behavior of FRP NSM systems in concrete elements. Compos B Eng 43(2):99–109

    Article  CAS  Google Scholar 

  38. Aidoo J, Harries KA, Petrou MF (2004) Fatigue behavior of carbon fiber reinforced polymer-strengthened reinforced concrete bridge girders. J Compos Constr 8(6):501–509

    Article  CAS  Google Scholar 

  39. Jalali M, Sharbatdar MK, Chen J-F, Jandaghi AF (2012) Shear strengthening of RC beams using innovative manually made NSM FRP bars. Constr Build Mater 36:990–1000

    Article  Google Scholar 

  40. Sun W, He T, Wang X, Zhang J, Lou T (2019) Developing an anchored near-surface mounted (NSM) FRP system for fuller use of FRP material with less epoxy filler. Compos Struct 226:111251

    Article  Google Scholar 

  41. Ke Y, Zhang SS, Nie XF, Yu T, Yang YM, Jedrzejko MJ (2022) Finite element modelling of RC beams strengthened in flexure with NSM FRP and anchored with FRP U-jackets. Compos Struct 282:115104

    Article  CAS  Google Scholar 

  42. Prota A, Nanni A, Manfredi G, Cosenza E (2016) Capacity assessment of RC subassemblages upgraded with CFRP. J Reinf Plast Compos 22(14):1287–1304

    Article  Google Scholar 

  43. Chellapandian M, Prakash SS, Sharma A (2019) Axial compression–bending interaction behavior of severely damaged RC columns rapid repaired and strengthened using hybrid FRP composites. Constr Build Mater 195:390–404

    Article  Google Scholar 

  44. Kumar P, Patnaik A, Chaudhary S (2017) A review on application of structural adhesives in concrete and steel–concrete composite and factors influencing the performance of composite connections. Int J Adhes Adhes 77:1–14

    Article  Google Scholar 

  45. Al-Zu’bi M, Fan M, Anguilano L (2022) Advances in bonding agents for retrofitting concrete structures with fibre reinforced polymer materials: a review. Constr Build Mater 330:127115

    Article  CAS  Google Scholar 

  46. Kang THK, Howell J, Kim S, Lee DJ (2012) A State-of-the-Art review on debonding failures of FRP laminates externally adhered to concrete. Int J Concr Struct Mater 6(2):123–134

    Article  Google Scholar 

  47. Wen B, Zhou Z, Zeng B, Yang C, Fang D, Xu Q et al (2020) Pulse-heating infrared thermography inspection of bonding defects on carbon fiber reinforced polymer composites. Sci Prog 103(3):36850420950131

    Article  PubMed  Google Scholar 

  48. Tamon U, Shrestha J, Rashid K, Qian Y, Dawei Z (2018) Long-term performance of external bonding under moisture and temperature effects. In: High Tech Concrete: where technology and engineering meet 2018, p 1867–1876

  49. Maranhão FL, John VM (2009) Bond strength and transversal deformation aging on cement-polymer adhesive mortar. Constr Build Mater 23(2):1022–1027

    Article  Google Scholar 

  50. Yang B, Tang X, Yang K, Xuan F-Z, Xiang Y, He L et al (2018) Temperature effect on graphene-filled interface between glass-carbon hybrid fibers and epoxy resin characterized by fiber-bundle pull-out test. J Appl Polym Sci. https://doi.org/10.1002/app.46263

    Article  Google Scholar 

  51. Chen W, Pham TM, Sichembe H, Chen L, Hao H (2018) Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet. Compos B Eng 134:114–126

    Article  CAS  Google Scholar 

  52. Jin F-L, Li X, Park S-J (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11

    Article  CAS  Google Scholar 

  53. Elsanadedy HM, Almusallam TH, Alsayed SH, Al-Salloum YA (2013) Flexural strengthening of RC beams using textile reinforced mortar—experimental and numerical study. Compos Struct 97:40–55

    Article  Google Scholar 

  54. Quan D, Urdániz JL, Ivanković A (2018) Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes. Mater Des 143:81–92

    Article  CAS  Google Scholar 

  55. Sajjad M, Zhao Z, Zhu X, Shi Y, Zhang C (2021) Transition molecular structures between block copolymers and hyperbranched copolymers suitable for toughening epoxy thermosets. Compos Commun 25:100762

    Article  Google Scholar 

  56. Ricciardi MR, Papa I, Langella A, Langella T, Lopresto V, Antonucci V (2018) Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin. Compos B Eng 139:259–267

    Article  CAS  Google Scholar 

  57. Qu C-B, Wu T, Huang G-W, Li N, Li M, Ma J-L et al (2021) Improving cryogenic mechanical properties of carbon fiber reinforced composites based on epoxy resin toughened by hydroxyl-terminated polyurethane. Compos Part B Eng 210:108569

    Article  CAS  Google Scholar 

  58. Wang YK, Chen L, Xu ZW (2010) Effect of various nanoparticles on friction and wear properties of glass fiber reinforced epoxy composites. Adv Mater Res 150–151:1106–1109

    Google Scholar 

  59. Guo C, Qian Y, Liu P, Zhang Q, Zeng X, Xu Z et al (2023) One-step construction of the positively/negatively charged ultrathin janus nanofiltration membrane for the separation of Li(+) and Mg(2). ACS Appl Mater Interfaces 15(3):4814–4825

    Article  CAS  PubMed  Google Scholar 

  60. Morshed SA, Sinha A, Zhang Q, Tatar J (2019) Hygrothermal conditioning of wet-layup CFRP-concrete adhesive joints modified with silane coupling agent and core-shell rubber nanoparticles. Constr Build Mater 227:116531

    Article  CAS  Google Scholar 

  61. Al-Saadi NTK, Mohammed A, Al-Mahaidi R (2018) Bond performance of NSM CFRP strips embedded in concrete using direct pull-out testing with cementitious adhesive made with graphene oxide. Constr Build Mater 162:523–533

    Article  CAS  Google Scholar 

  62. Messori M, Nobili A, Signorini C, Sola A (2018) Mechanical performance of epoxy coated AR-glass fabric textile reinforced mortar: influence of coating thickness and formulation. Compos B Eng 149:135–143

    Article  CAS  Google Scholar 

  63. Deng J, Jia Y, Zheng H (2016) Theoretical and experimental study on notched steel beams strengthened with CFRP plate. Compos Struct 136:450–459

    Article  Google Scholar 

  64. Siewczyńska M (2012) Method for determining the parameters of surface roughness by usage of a 3D scanner. Arch Civ Mech Eng 12(1):83–89

    Article  Google Scholar 

  65. Chung DDL (2012) Interface engineering for cement-matrix composites. Compos Interfaces 8(1):67–81

    Article  Google Scholar 

  66. Valikhani A, Jahromi AJ, Mantawy IM, Azizinamini A (2020) Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application. Constr Build Mater 238:117753

    Article  Google Scholar 

  67. Júlio ENBS, Branco FAB, Silva VTD (2004) Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface. Constr Build Mater 18(9):675–681

    Article  Google Scholar 

  68. Costa H, Carmo RNF, Júlio E (2018) Influence of lightweight aggregates concrete on the bond strength of concrete-to-concrete interfaces. Constr Build Mater 180:519–530

    Article  Google Scholar 

  69. Yin Y, Fan Y (2018) Influence of roughness on shear bonding performance of CFRP-concrete interface. Materials 11(10):1875

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cerniauskas G, Tetta Z, Bournas DA, Bisby LA (2020) Concrete confinement with TRM versus FRP jackets at elevated temperatures. Mater Struct. https://doi.org/10.1617/s11527-020-01492-x

    Article  Google Scholar 

  71. Silva MAG, Biscaia H (2008) Degradation of bond between FRP and RC beams. Compos Struct 85(2):164–174

    Article  Google Scholar 

  72. Galati N, Nanni A, Dharani LR, Focacci F, Aiello MA (2006) Thermal effects on bond between FRP rebars and concrete. Compos A Appl Sci Manuf 37(8):1223–1230

    Article  Google Scholar 

  73. Ferrier E, Rabinovitch O, Michel L (2016) Mechanical behavior of concrete–resin/adhesive–FRP structural assemblies under low and high temperatures. Constr Build Mater 127:1017–1028

    Article  CAS  Google Scholar 

  74. Ahmad H, Hameed R, Riaz MR, Gillani AA (2018) Strengthening of concrete damaged by mechanical loading and elevated temperature. Adv Concr Constr 6(6):645–658

    Google Scholar 

  75. Wang Z, Dai J-G, Wang M, Chen L, Zhang F, Xu Q (2021) Residual bond strengths of epoxy and cement-bonded CFRP reinforcements to concrete interfaces after elevated temperature exposure. Fire Saf J 124:103393

    Article  CAS  Google Scholar 

  76. Gholami M, Sam ARM, Marsono AK, Tahir MM, Faridmehr I (2016) Performance of steel beams strengthened with pultruded CFRP plate under various exposures. Steel Compos Struct 20(5):999–1022

    Article  Google Scholar 

  77. Pan Y, Xian G, Silva MAG (2015) Effects of water immersion on the bond behavior between CFRP plates and concrete substrate. Constr Build Mater 101:326–337

    Article  Google Scholar 

  78. Karbhari VM, Navada R (2008) Investigation of durability and surface preparation associated defect criticality of composites bonded to concrete. Compos A Appl Sci Manuf 39(6):997–1006

    Article  Google Scholar 

  79. Datla NV, Papini M, Ulicny J, Carlson B, Spelt JK (2011) The effects of test temperature and humidity on the mixed-mode fatigue behavior of a toughened adhesive aluminum joint. Eng Fract Mech 78(6):1125–1139

    Article  Google Scholar 

  80. Blackburn BP, Tatar J, Douglas EP, Hamilton HR (2015) Effects of hygrothermal conditioning on epoxy adhesives used in FRP composites. Constr Build Mater 96:679–689

    Article  Google Scholar 

  81. Wan B, Petrou MF, Harries KA (2016) The effect of the presence of water on the durability of bond between CFRP and concrete. J Reinf Plast Compos 25(8):875–890

    Article  Google Scholar 

  82. Xian G, Li H, Su X (2012) Water absorption and hygrothermal ageing of ultraviolet cured glass-fiber reinforced acrylate composites. Polym Compos 33(7):1120–1128

    Article  CAS  Google Scholar 

  83. Li J, Xie J, Liu F, Lu Z (2019) A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments. Compos Struct 229:111372

    Article  Google Scholar 

  84. Xie Z, Xie J, Guo Y, Huang Y (2017) Durability of CFRP-wrapped concrete exposed to hydrothermal environment. Int J Civ Eng 16(5):527–541

    Article  Google Scholar 

  85. Cromwell JR, Harries KA, Shahrooz BM (2011) Environmental durability of externally bonded FRP materials intended for repair of concrete structures. Constr Build Mater 25(5):2528–2539

    Article  Google Scholar 

  86. Dong Z-Q, Wu G, Zhao X-L, Lian J-L (2018) Long-term bond durability of fiber-reinforced polymer bars embedded in seawater sea-sand concrete under ocean environments. J Compos Constr. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000876

    Article  Google Scholar 

  87. Wang M, Xu X, Ji J, Yang Y, Shen J, Ye M (2016) The hygrothermal aging process and mechanism of the novolac epoxy resin. Compos B Eng 107:1–8

    Article  Google Scholar 

  88. Quagliarini E, Monni F, Bondioli F, Lenci S (2016) Basalt fiber ropes and rods: durability tests for their use in building engineering. J Build Eng 5:142–150

    Article  Google Scholar 

  89. Chalot A, Michel L, Ferrier E (2019) Experimental study of external bonded CFRP-concrete interface under low cycle fatigue loading. Compos Part B Eng 177:107255

    Article  CAS  Google Scholar 

  90. Granju J-L, Sabathier V, Turatsinze A, Toumi A (2004) Interface between an old concrete and a bonded overlay: debonding mechanism. Interface Sci 12(4):381–388

    Article  CAS  Google Scholar 

  91. Chajes MJ, Finch WW, Thomson TA (1996) Bond and force transfer of composite-material plates bonded to concrete. Struct J 93(2):209–217

    Google Scholar 

  92. An F-C, Zhang F-Y, Hou C-C (2020) Influence of mechanical properties of concrete on the failure behaviour of FRP-to-concrete interface. Constr Build Mater 264:120572

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Natural Science Foundation of China (12102300) and Tianjin Science and Technology Commissioner Project (23YDTPJC00480).

Author information

Authors and Affiliations

Authors

Contributions

Hui Zhang: preparation, creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation). Xiaoyuan Pei: formulation or evolution of overarching research goals. Zhengxin Yang: preparation, creation and/or presentation of the published work by those from the original research group. Shigang Luo: oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team. Minjie Yan: ideas. Liangsen Liu: oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team. Zhiwei Xu: acquisition of the financial support for the project leading to this publication.

Corresponding authors

Correspondence to Xiaoyuan Pei or Zhiwei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Pei, X., Yang, Z. et al. Interfacial design and damage of fiber-reinforced polymer composites/strengthening concrete: a review. J Mater Sci 59, 6645–6661 (2024). https://doi.org/10.1007/s10853-024-09566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09566-9

Navigation