Skip to main content
Log in

Effect of overlap rate on the microstructure and corrosion behavior of pure copper laser cladding

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Compared with cold spraying and electroplating, laser cladding is also an efficient and reliable surface modification technique to prepare pure copper coating, yet with uniqueness such as the combination of forming metallurgical bonding with substrate and high deposition rate. As such, pure copper coating with different overlap rates was successfully prepared on the Q245R substrate. The surface quality, defects quantity, phase composition, grain orientation, and corrosion behavior were investigated by surface profiler, scanning electron microscope, energy dispersive spectrometer, X-ray diffraction, electron backscattered diffraction, and electrochemical analysis. As the overlap rate increases, the surface roughness decreases then increases, and the pores and unfused defects disappear then reappear. The grain formation changes from columnar to equiaxed crystals and then to columnar crystals, with the orientation of grains shifting from \(\left\langle {100} \right\rangle\) to \(\left\langle {{1}0{1}} \right\rangle\) direction. Further analysis revealed that the pure copper coating with a 70% overlap rate possesses fewer pores, unfused defects, and no interfacial cracks, thus the best compactness. Moreover, the pure copper coating with a 70% overlap rate in 3 mol/L NaCl solution exhibits the best corrosion resistance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Féron D, Crusset D, Gras J-M (2008) Corrosion issues in nuclear waste disposal. J Nucl Mater 379:16–23. https://doi.org/10.1016/j.jnucmat.2008.06.023

    Article  CAS  Google Scholar 

  2. Hall DS, Keech PG (2017) An overview of the Canadian corrosion program for the long-term management of nuclear waste. Corros Eng Sci Technol 52:2–5. https://doi.org/10.1080/1478422x.2016.1275419

    Article  CAS  Google Scholar 

  3. Diomidis N, Johnson LH, Bastid P, Allen C (2017) Design development of a copper-coated canister for the disposal of spent fuel in a deep geological repository in Opalinus Clay. Corros Eng Sci Technol 52:31–39. https://doi.org/10.1080/1478422x.2017.1292200

    Article  CAS  Google Scholar 

  4. King F, Kolář M (2018) Lifetime predictions for nuclear waste disposal containers. Corrosion 75:309–323. https://doi.org/10.5006/2994

    Article  CAS  Google Scholar 

  5. Suzuki S, Ogawa Y, Giallonardo J, Keech PG (2021) The design of copper-coating overpack for the high-level radioactive waste disposal concept in Japan. Mater Corros 72:94–106. https://doi.org/10.1002/maco.202011855

    Article  CAS  Google Scholar 

  6. Hall DS, Standish TE, Behazin M, Keech PG (2018) Corrosion of copper-coated used nuclear fuel containers due to oxygen trapped in a Canadian deep geological repository. Corros Eng Sci Technol 53:309–315. https://doi.org/10.1080/1478422x.2018.1463009

    Article  CAS  Google Scholar 

  7. Järvine AK, Murchison AG, Keech PG, Pandey MD (2019) A probabilistic model for estimating the life expectancy of used nuclear fuel containers in a Canadian geological repository: baseline model. Nucl Eng Des 352:110202. https://doi.org/10.1016/j.nucengdes.2019.110202

    Article  CAS  Google Scholar 

  8. Keech PG, Behazin M, Binns WJ, Briggs S (2021) An update on the copper corrosion program for the long-term management of used nuclear fuel in Canada. Mater Corros 72:25–31. https://doi.org/10.1002/maco.202011763

    Article  CAS  Google Scholar 

  9. Hall DS, Behazin M, Jeffrey Binns W, Keech PG (2021) An evaluation of corrosion processes affecting copper-coated nuclear waste containers in a deep geological repository. Prog Mater Sci 118:100766. https://doi.org/10.1016/j.pmatsci.2020.100766

    Article  CAS  Google Scholar 

  10. King F (2013) Container materials for the storage and disposal of nuclear waste. Corrosion 69:986–1011. https://doi.org/10.5006/0894

    Article  CAS  Google Scholar 

  11. Briggs S, McKelvie J, Sleep B, Krol M (2017) Multi-dimensional transport modelling of corrosive agents through a bentonite buffer in a Canadian deep geological repository. Sci Total Environ 599–600:348–354. https://doi.org/10.1016/j.scitotenv.2017.04.242

    Article  CAS  PubMed  Google Scholar 

  12. Nie BX, Xue YP, Wang XM et al (2023) On the elemental segregation and melt flow behavior of pure copper laser cladding. Surf Coat Technol 452:129085. https://doi.org/10.1016/j.surfcoat.2022.129085

    Article  CAS  Google Scholar 

  13. Li WW, Yu B, Tam J et al (2020) Microstructural characterization of copper coatings in development for application to used nuclear fuel containers. J Nucl Mater 532:152039. https://doi.org/10.1016/j.jnucmat.2020.152039

    Article  CAS  Google Scholar 

  14. Partovi-Nia R, Ramamurthy S, Zagidulin D et al (2015) Corrosion of cold spray deposited copper coating on steel substrates. Corrosion 71:1237–1247. https://doi.org/10.5006/1757

    Article  CAS  Google Scholar 

  15. Keech PG, Vo P, Ramamurthy S, Chen J, Jacklin R, Shoesmith DW (2014) Design and development of copper coatings for long term storage of used nuclear fuel. Corros Eng Sci Technol 49:425–430. https://doi.org/10.1179/1743278214Y.0000000206

    Article  CAS  Google Scholar 

  16. Singh S, Chaudhary S, Singh H (2019) Effect of electroplated interlayers on properties of cold-sprayed copper coatings on SS316L steel. Surf Coat Technol 375:54–65. https://doi.org/10.1016/j.surfcoat.2019.07.015

    Article  CAS  Google Scholar 

  17. Tam J, Li W, Yu B et al (2020) Reducing complex microstructural heterogeneity in electrodeposited and cold sprayed copper coating junctions. Surf Coat Technol 404:126479. https://doi.org/10.1016/j.surfcoat.2020.126479

    Article  CAS  Google Scholar 

  18. Boyle CH, Meguid SA (2015) Mechanical performance of integrally bonded copper coatings for the long term disposal of used nuclear fuel. Nucl Eng Des 293:403–412. https://doi.org/10.1016/j.nucengdes.2015.08.011

    Article  CAS  Google Scholar 

  19. Jakupi P, Keech PG, Barker I et al (2015) Characterization of commercially cold sprayed copper coatings and determination of the effects of impacting copper powder velocities. J Nucl Mater 466:1–11. https://doi.org/10.1016/j.jnucmat.2015.07.001

    Article  CAS  Google Scholar 

  20. Fernández R, MacDonald D, Nastić A, Jodoin B, Tieu A, Vijay M (2016) Enhancement and prediction of adhesion strength of copper cold spray coatings on steel substrates for nuclear fuel repository. J Therm Spray Technol 25:1577–1587. https://doi.org/10.1007/s11666-016-0467-8

    Article  CAS  Google Scholar 

  21. Vilar R (1999) Laser cladding. J Laser Appl 11:64–79. https://doi.org/10.2351/1.521888

    Article  CAS  Google Scholar 

  22. Asano K, Tsukamoto M, Funada Y et al (2018) Copper film formation on metal surfaces with 100 W blue direct diode laser system. J Laser Appl 30:032602. https://doi.org/10.2351/1.5040635

    Article  CAS  Google Scholar 

  23. Asano K, Tsukamoto M, Sechi Y et al (2018) Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers. Opt Laser Technol 107:291–296. https://doi.org/10.1016/j.optlastec.2018.06.012

    Article  CAS  Google Scholar 

  24. Sato Y, Tsukamoto M, Shobu T et al (2019) In situ X-ray observations of pure-copper layer formation with blue direct diode lasers. Appl Surf Sci 480:861–867. https://doi.org/10.1016/j.apsusc.2019.03.057

    Article  CAS  Google Scholar 

  25. Zeng DW, Xie CS, Wang MQ (2003) In situ synthesis and characterization of Fep/Cu composite coating on SAE 1045 carbon steel by laser cladding. Mater Sci Eng A 344:357–364. https://doi.org/10.1016/S0921-5093(02)00451-3

    Article  Google Scholar 

  26. Singh S, Kumar M, Sodhi GPS, Buddu RK, Singh H (2018) Development of thick copper claddings on SS316L steel for In-vessel components of fusion reactors and copper-cast iron canisters. Fusion Eng Des 128:126–137. https://doi.org/10.1016/j.fusengdes.2018.01.076

    Article  CAS  Google Scholar 

  27. Yadav S, Paul CP, Jinoop AN, Rai AK, Bindra KS (2020) Laser directed energy deposition based additive manufacturing of copper: process development and material characterizations. J Manuf Process 58:984–997. https://doi.org/10.1016/j.jmapro.2020.09.008

    Article  Google Scholar 

  28. Higashino R, Tsukamoto M, Sato Y, Abe N, Asano K, Funada Y (2017) Development of 100W class blue direct diode laser coating system for laser metal deposition. In: SPIE LASE, laser 3D manufacturing IV, San Francisco, California, USA. https://doi.org/10.1117/12.2250263

  29. Cao J, Liu F, Lin X, Huang C, Chen J, Huang W (2013) Effect of overlap rate on recrystallization behaviors of Laser Solid Formed Inconel 718 superalloy. Opt Laser Technol 45:228–235. https://doi.org/10.1016/j.optlastec.2012.06.043

    Article  CAS  Google Scholar 

  30. Qiao X, Xia T, Chen P (2021) Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating. Chin Phys B 30:018104. https://doi.org/10.1088/1674-1056/abcf9b

    Article  Google Scholar 

  31. Yao C, Xiaotong P, Qunfu G, Zhijie W, Pulin N (2022) Effect of laser remelting on the microstructure and mechanical properties of AerMet100 steel fabricated by laser cladding. Mater Sci Eng A 840:142951. https://doi.org/10.1016/j.msea.2022.142951

    Article  CAS  Google Scholar 

  32. Xu X, Lu H, Su Y et al (2022) Comparing corrosion behavior of additively manufactured Cr-rich stainless steel coating between conventional and extreme high-speed laser metal deposition. Corros Sci 195:109976. https://doi.org/10.1016/j.corsci.2021.109976

    Article  CAS  Google Scholar 

  33. Tao Z, Zhang S, Li W, Hou B (2009) Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives. Corros Sci 51:2588–2595. https://doi.org/10.1016/j.corsci.2009.06.042

    Article  CAS  Google Scholar 

  34. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55:6218–6227. https://doi.org/10.1016/j.electacta.2009.10.065

    Article  CAS  Google Scholar 

  35. Livingston JD (1960) Etch pits at dislocations in copper. J Appl Phys 31:1071–1076. https://doi.org/10.1063/1.1735748

    Article  CAS  Google Scholar 

  36. Rahmouni K, Keddam M, Srhiri A, Takenouti H (2005) Corrosion of copper in 3% NaCl solution polluted by sulphide ions. Corros Sci 47:3249–3266. https://doi.org/10.1016/j.corsci.2005.06.017

    Article  CAS  Google Scholar 

  37. Tüken T, Yazıcı B, Erbil M (2006) The use of polyindole for prevention of copper corrosion. Surf Coat Technol 200:4802–4809. https://doi.org/10.1016/j.surfcoat.2005.04.023

    Article  CAS  Google Scholar 

  38. Lee HP, Nobe K (1986) Kinetics and mechanisms of Cu electrodissolution in chloride media. J Electrochem Soc 133:2035–2043. https://doi.org/10.1149/1.2108335

    Article  CAS  Google Scholar 

  39. Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) Electrochemical behaviour of copper in neutral aerated chloride solution. I. Steady-state investigation. J Appl Electrochem 18:374–383. https://doi.org/10.1007/BF01093751

    Article  CAS  Google Scholar 

  40. Millet B, Fiaud C, Hinnen C, Sutter EMM (1995) A correlation between electrochemical behaviour, composition and semiconducting properties of naturally grown oxide films on copper. Corros Sci 37:1903–1918. https://doi.org/10.1016/0010-938X(95)00072-R

    Article  CAS  Google Scholar 

  41. Sharma VK, Millero FJ (1988) The oxidation of Cu(I) in electrolyte solutions. J Solut Chem 17:581–599. https://doi.org/10.1007/BF00651464

    Article  CAS  Google Scholar 

  42. Hauser AK, Newman J (1989) Singular perturbation analysis of the faradaic impedance of copper dissolution accounting for the effects of finite rates of a homogeneous reaction. J Electrochem Soc 136:2820–2831. https://doi.org/10.1149/1.2096293

    Article  CAS  Google Scholar 

  43. Wang D, Xiang B, Liang Y, Song S, Liu C (2014) Corrosion control of copper in 3.5 wt.% NaCl solution by domperidone: experimental and theoretical study. Corros Sci 85:77–86. https://doi.org/10.1016/j.corsci.2014.04.002

    Article  CAS  Google Scholar 

  44. Wang J, Xu C, Lv G (2006) Formation processes of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media. Appl Surf Sci 252:6294–6303. https://doi.org/10.1016/j.apsusc.2005.08.041

    Article  CAS  Google Scholar 

  45. Standish T, Chen J, Jacklin R et al (2016) Corrosion of copper-coated steel high level nuclear waste containers under permanent disposal conditions. Electrochim Acta 211:331–342. https://doi.org/10.1016/j.electacta.2016.05.135

    Article  CAS  Google Scholar 

  46. Kosec T, Qin Z, Chen J, Legat A, Shoesmith DW (2015) Copper corrosion in bentonite/saline groundwater solution: effects of solution and bentonite chemistry. Corros Sci 90:248–258. https://doi.org/10.1016/j.corsci.2014.10.017

    Article  CAS  Google Scholar 

  47. Kear G, Barker BD, Walsh FC (2004) Electrochemical corrosion of unalloyed copper in chloride media––a critical review. Corros Sci 46:109–135. https://doi.org/10.1016/S0010-938X(02)00257-3

    Article  CAS  Google Scholar 

  48. Betova I, Beverskog B, Bojinov M et al (2003) Corrosion of copper in simulated nuclear waste repository conditions. Electrochem Solid-State Lett 6:B19–B22. https://doi.org/10.1149/1.1557033

    Article  CAS  Google Scholar 

  49. Rosborg B, Pan J (2008) An electrochemical impedance spectroscopy study of copper in a bentonite/saline groundwater environment. Electrochim Acta 53:7556–7564. https://doi.org/10.1016/j.electacta.2008.04.021

    Article  CAS  Google Scholar 

  50. Feng Y, Siow K-S, Teo W-K, Tan K-L, Hsieh A-K (1997) Corrosion mechanisms and products of copper in aqueous solutions at various pH values. Corrosion 53:389–398. https://doi.org/10.5006/1.3280482

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the Fundamental Research Funds for the Central Universities (No. FRF-TP-20-049A2).

Author information

Authors and Affiliations

Authors

Contributions

Baoxian Nie: Methodology, Investigation, Original draft. Yanpeng Xue: Methodology, Original draft, review & editing, Resources. Benli Luan: Review & editing, Supervision.

Corresponding authors

Correspondence to Yanpeng Xue or Benli Luan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

There are no experiments utilizing human tissue in this publication.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, B., Xue, Y. & Luan, B. Effect of overlap rate on the microstructure and corrosion behavior of pure copper laser cladding. J Mater Sci 59, 6564–6582 (2024). https://doi.org/10.1007/s10853-024-09544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09544-1

Navigation