Skip to main content

Advertisement

Log in

Phase stability and electronic structure of CsPbBr3 perovskites under rare-earth doping and hydrostatic pressure

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The CsPbBr3 perovskite materials have promising applications in various optoelectronic devices due to their advantages of high luminescence color purity, tunable band gap, and high photoluminescence quantum yield. Herein, the phase stability, electronic structure, and optical properties of CsPbBr3 under rare-earth (RE) doping and hydrostatic pressure have been studied using density functional theory calculations. The relationship between properties of perovskites and different RE doping and pressure was summarized. The band gap of CsPbBr3:RE appeared reduction with the decreasing radius of the doping RE ions, which can guide the adjustment of band gap. The pressure coefficients of undoped CsPbBr3 is − 0.016 eV/GPa, while that of RE-doped CsPbBr3 exhibits an average of − 0.0144 eV/GPa. The combination of RE doping and pressure provides a wider tunable range for band gap. The rare-earth doping and applying pressure are of great significance for the regulating properties of perovskites. Our work provided the opportunities to unveil the underlying mechanism of the doping effect and pressure engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data in this article are available for readers.

References

  1. Shi Y, Fu Y, Ma ZW, Zhao DL, Wang K, Xiao GJ, Zou B (2023) Pressure regulating self-trapped states toward remarkable emission enhancement of zero-dimensional lead-free halides nanocrystals. Small 19:2300455

    Article  CAS  Google Scholar 

  2. Deng JD, Wang HR, Xun J, Wang JX, Yang XY, Shen W, Li M, He RX (2020) Room-temperature synthesis of excellent-performance CsPb1-xSnxBr3 perovskite quantum dots and application in light emitting diodes. Mater Des 185:108246

    Article  CAS  Google Scholar 

  3. Song YH, Park SY, Yoo JS, Park WK, Kim SY, Choi HS, Kwon SB, Kang BK, Kim JP, Jung HS, Yoon DH, Yang WS, Seo YS (2018) Efficient and stable green-emitting CsPbBr3 perovskite nanocrystals in a microcapsule for light emitting diodes. Chem Eng J 352:957–963

    Article  CAS  Google Scholar 

  4. Huan P, Sa RJ, Liu DW (2022) The difference on the physical properties between CsPbX3 and Cs2PbX6: A comparative study. J Solid State Chem 310:123055

    Article  Google Scholar 

  5. Liu DW, Zha WY, Guo YM, Sa RJ (2020) Insight into the improved phase stability of CsPbI3 from First-Principles calculations. ACS Omega 5(1):893–896

    Article  CAS  PubMed  Google Scholar 

  6. Knutson JL, Martin JD, Mitzi DB (2005) Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg Chem 44(13):4699–4705

    Article  CAS  PubMed  Google Scholar 

  7. Devadoss I, Muthukumaran S (2016) Doping induced structural, band gap and photoluminescence properties of Cd0.9-xZn0.1CoxS nanoparticles. J Mater Sci: Mater Electron 27:7389–7397

    CAS  Google Scholar 

  8. Xiao GJ, Cao Y, Qi G, Qi GY, Wang LR, Liu C, Ma ZW, Yang XY, Sui YM, Zheng WT, Zou B (2017) Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. J Am Chem Soc 139(29):10087–10094

    Article  CAS  PubMed  Google Scholar 

  9. Das S, De A, Samanta A (2020) Ambient condition Mg2+ doping producing highly luminescent green-and violet-emitting perovskite nanocrystals with reduced toxicity and enhanced stability. J Phys Chem Lett 11(3):1178–1188

    Article  CAS  PubMed  Google Scholar 

  10. Zhang HB, Shang MH, Zheng XY, Zeng ZB, Chen RJ, Zhang Y, Zhang J, Zhu YJ (2017) Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells. Electrochim Acta 254:165–171

    Article  CAS  Google Scholar 

  11. Li M, Zhang X, Matras-Postolek K, Chen H, Yang P (2018) An anion-driven Sn2+ exchange reaction in CsPbBr3 nanocrystals toward tunable and high photoluminescence. J Mater Chem C 6(20):5506–5513

    Article  CAS  Google Scholar 

  12. Liu WY, Lin QL, Li HB, Wu KF, Robel I, Pietryga JM, Kilmov VI (2016) Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J Am Chem Soc 138(45):14954–14961

    Article  CAS  PubMed  Google Scholar 

  13. Sa RJ, Luo BL, Ma ZJ, Liang LT, Liu DW (2022) Revealing the influence of B-site doping on the physical properties of CsPbI3: a DFT investigation. J Solid State Chem 309:122956

    Article  CAS  Google Scholar 

  14. Milstein TJ, Kluherz KT, Kroupa DM, Erickson CS, Yoreo JJD, Gamelin DR (2019) Anion exchange and the quantum-cutting energy threshold in ytterbium-doped CsPb(Cl1-xBrx)3 perovskite nanocrystals. Nano Lett 19(3):1931–1937

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Jing XL, Zhou DL, Sun R, Zhang Y, Li YC, Li XD, Li QJ, Song HW, Liu BB (2021) Enhanced photoluminescence and photoresponsiveness of Eu3+ ions-doped CsPbCl3 perovskite quantum dots under high pressure. Adv Funct Mater 31(31):2100930

    Article  CAS  Google Scholar 

  16. Hu QS, Li Z, Tan ZF, Song HB, Ge C, Niu GD, Han JT, Tang J (2018) Rare earth ion-doped CsPbBr3 nanocrystals. Adv Opt Mater 6(2):1700864

    Article  Google Scholar 

  17. Padhiar MA, Wang MQ, Ji YQ, Yang Z, Bhatti AS (2022) Tuning optical properties of CsPbBr3 by mixing Nd3+ trivalent lanthanide halide cations for blue light emitting devices. Nanotechnology 33(17):175202

    Article  ADS  Google Scholar 

  18. Yao JS, Ge J, Han BN, Wang KH, Yao HB, Yu HL, Li JH, Zhu BS, Song JZ, Chen C, Zhang Q, Zeng HB, Luo Y, Yu SH (2018) Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J Am Chem Soc 140(10):3626–3634

    Article  CAS  PubMed  Google Scholar 

  19. He LJ, Meng JL, Feng J, Liu XJ, Zhang HJ (2020) Unveiling the mechanism of rare earth doping to optimize the optical performance of the CsPbBr3 perovskite. Inorg Chem Front 7(23):4669–4676

    Article  CAS  Google Scholar 

  20. Han SY, Qin X, An ZF, Zhu YH, Liang LL, Han Y, Liu HW (2016) Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nat Commun 7:13059

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma ZW, Liu Z, Lu SY, Wang LR, Feng XL, Yang DW, Wang K, Xiao GJ, Zhang LJ, Redfern SA, Zou B (2018) Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat Commun 9(1):4506

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Zhang L, Zeng QX, Wang K (2017) Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3. J Phys Chem Lett 8(16):3752–3758

    Article  CAS  PubMed  Google Scholar 

  23. Zhao DL, Xiao GJ, Liu Z, Sui LZ, Yuan KJ, Ma ZW, Zou B (2021) Harvesting cool daylight in hybrid organic-inorganic halides microtubules through the reservation of pressure-induced emission. Adv Mater 33(31):2100323

    Article  CAS  Google Scholar 

  24. Ueno M, Onodera A, Shimomura O, Takemura K (1992) X-ray observation of the structural phase transition of aluminum nitride under high pressure. Phys Rev B 45(17):10123–10126

    Article  ADS  CAS  Google Scholar 

  25. Huang Y, Wang LR, Ma Z, Wang F (2018) Pressure-induced band structure evolution of halide perovskites: a first-principles atomic and electronic structure study. J Phys Chem C 123(1):739–745

    Article  Google Scholar 

  26. Li WX, Yang JY, Liu B, Zhou PY, Zhang Y, Gao Y (2022) Pressure effect on self-trapped exciton and dopant energy transfer in neodymium-doped CsPbBr3 perovskite nanocrystals. J Phys Chem C 126(49):20983–20989

    Article  CAS  Google Scholar 

  27. Tian M, Gao Y, Zhou PY, Chi KL, Zhang Y, Liu B (2021) Improving persistent luminescence in pressure-tuned CsPbBr3 nanocrystals by Ce3+ doping. Phys Chem Chem Phys 23(26):20567–20573

    Article  CAS  PubMed  Google Scholar 

  28. Pan GC, Bai X, Yang DW, Chen X, Jing PT, Qu SN, Zhang LJ, Zhou DL, Zhu JY, Xu W, Dong B, Song HW (2017) Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett 17(12):8005–8011

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Am B, Kumar V (2019) Stability of the Eu2+ dopant in CsPbBr3 perovskites: a first-principles study. J Phys Chem C 123(12):6965–6969

    Article  Google Scholar 

  30. Kresse G, Furthmüller J (1966) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  ADS  Google Scholar 

  31. Perdew JP, Burke M, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Mei H, Zhai Y, Zhu QQ, Wu N, Zhang H, Liang P, Wang L (2023) Phase stability and electronic structure of CsPbCl3 under hydrostatic stress and anion substitution. Phys Chem Chem Phys 25(2):1279–1289

    Article  CAS  PubMed  Google Scholar 

  33. Li HF, Liu XQ, Zhou DL, Dong B, Xu L, Bai X, Song HW (2023) Realization of 1.54-µm light-emitting diodes based on Er3+/Yb3+ Co-Doped CsPbCl3 Films. Adv Mater 35(25):2300118

    Article  CAS  Google Scholar 

  34. Jiang LQ, Guo JK, Liu HB, Zhu M, Wu P, Li CH (2006) Prediction of lattice constant in cubic perovskites. J Phys Chem Solids 67(7):1531–1536

    Article  ADS  CAS  Google Scholar 

  35. Pansa-Ngat P, Singh K, Patel B, Seriwattanachai C, Kanjanaboos P, Voznyy O (2022) Stereoelectronic effect from B-Site dopants stabilizes black phase of CsPbI3. Chem Mater 35(1):271–279

    Article  Google Scholar 

  36. Joshi H, Thapa RK, Laref A, Sukkabot W, Pachuau L, Vanchhawng L, Grima-Gallardo P, Musa Saad H-E, Rai DP (2022) Electronic and optical properties of cubic bulk and ultrathin surface [001] slab of CsPbBr3. Surf Interfaces 30:101829

    Article  CAS  Google Scholar 

  37. Murtaza G, Ahmad I (2011) First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M= Cl, Br, I). Physica B Condens Matter 406(17):3222–3229

    Article  ADS  CAS  Google Scholar 

  38. Xie YJ, Peng B, Bravić I, Yu Y, Dong YR, Liang RQ, Ou QG, Monserrat B, Zhang SY (2020) Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping. Adv Sci 7(20):2001698

    Article  CAS  Google Scholar 

  39. Yin J, Ahmed GH, Bakr OM, Brédas JL, Mohammed OF (2019) Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite. ACS Energy Lett 4(3):789–795

    Article  CAS  Google Scholar 

  40. Zhou DL, Liu DL, Pan GC, Chen X, Li DY, Xu W, Bai X, Song HW (2017) Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv Mater 29(42):1704149

    Article  Google Scholar 

  41. Saha S, Sinha TP, Mookerjee A (2000) Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B 62(13):8828–8834

    Article  ADS  CAS  Google Scholar 

  42. Li Q, Xu B, Chen ZW, Han J, Tan L, Luo ZS, Shen PF, Quan ZW (2021) Excitation-dependent emission color tuning of 0D Cs2InBr5·H2O at High Pressure. Adv Funct Mater 31(38):2104923

    Article  CAS  Google Scholar 

  43. Rao M, Zhu YH, Zhang ZY, Yang T, Hu DX, Yang DX (2022) Strain coupling and Jahn-Teller effect in efficient and stable sky-blue germanium-lead perovskites. J Mater Chem C 10(17):6827–6836

    Article  CAS  Google Scholar 

  44. Ma ZW, Li FF, Zhao DL, Xiao GJ, Zou B (2020) Whether or not emission of Cs4PbBr6 nanocrystals: high-pressure experimental evidence. CCS Chem 2:71–80

    Article  CAS  Google Scholar 

  45. Ma ZW, Li Q, Luo JJ, Li SR, Sui LZ, Zhao DL, Yuan KJ, Xiao GJ, Tang J, Quan ZW, Zou B (2021) Pressure-driven reverse intersystem crossing: new path toward bright deep-blue emission of lead-free halide double perovskites. J Am Chem Soc 143(37):15176–15184

    Article  CAS  PubMed  Google Scholar 

  46. Zhao XG, Yang JH, Fu YH, Yang DW, Xu QL, Yu LP, Wei SH, Zhang LJ (2017) Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J Am Chem Soc 139(7):2630–2638

    Article  CAS  PubMed  Google Scholar 

  47. Gao XJ, Wang Q, Zhang Y, Cui CL, Sui N, Chi XC, Zhang HZ, Qian Z, Bao YJ, Wang YH (2020) Pressure effects on optoelectronic properties of CsPbBr3 nanocrystals. J Phys Chem C 124(20):11239–11247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Science and Technology Research Project of the Jilin Provincial Education Department (Grant Nos. JJKH20220093KJ and JJKH20210084KJ), and the Tianjin Municipal Science and Technology Plan Project of China (Grant No. 23YDTPJC00370).

Author information

Authors and Affiliations

Authors

Contributions

Y-JY was involved in conceptualization, investigation, data curation, formal analysis, writing-original draft and visualization. L-YQ was involved in writing-review and editing. LY was involved in conceptualization and project administration. C-YM was involved in validation. ZY and Z-PY was involved in project administration. LB was involved in conceptualization, investigation, writing-review and editing, visualization, supervision, resources and project administration.

Corresponding authors

Correspondence to Bao Liu or Yuqiang Li.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval

Not applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, Y., Cai, Y. et al. Phase stability and electronic structure of CsPbBr3 perovskites under rare-earth doping and hydrostatic pressure. J Mater Sci 59, 4586–4595 (2024). https://doi.org/10.1007/s10853-024-09521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09521-8

Navigation