Skip to main content
Log in

High sensitivity low-temperature ethanol and acetone gas sensors based on silver/titanium oxide decorated laser-induced graphene

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The increasing environmental and safety concerns necessitate the development of advanced gas sensors capable of effectively identifying volatile and hazardous organic substances. Different sensors have been utilized to detect volatile organic compounds (VOCs). In this study, we report on the successful design of chemiresistive sensors based on porous laser-induced graphene (LIG) to effectively detect VOCs, including acetone and ethanol. Flexible 3D porous LIG has been produced using femtosecond laser texturing of polyimide tape. The 3D porous LIG primarily consists of multilayer graphene sheets comprising two or more monolayers. To enhance the sensors’ capabilities, we created LIG-based heterojunction devices by decorating the LIG with Ag and TiOx (x ≤ 2) nanoparticles (NPs) using femtosecond pulsed laser deposition. Our experiments show that the sensitivity of LIG sensors increases when they are decorated with Ag and TiOx NPs. Among these, the LIG devices decorated with Ag NPs show the highest sensitivity and response compared to others. The sensor is reversibly responsive at ambient temperature towards the target VOCs in concentrations below 3000 ppm. Additionally, we introduce a mechanism to explain our findings. This mechanism relies on the distinction in the work function and energy level alignment linked to the interactions between adsorbates and adsorbents. The improved sensitivity of the Ag NPs-decorated porous LIG sensor is attributed to the favourable work function of Ag and the abundant availability of adsorption sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data and code availability

Data is available upon request from the corresponding authors.

References

  1. Gai LY et al (2022) Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met 41(6):1818–1842. https://doi.org/10.1007/S12598-021-01937-4

    Article  CAS  Google Scholar 

  2. Wild R, Citterio D, Spichiger J, Spichiger UE (1996) Continuous monitoring of ethanol for bioprocess control by a chemical sensor. J Biotechnol 50(1):37–46. https://doi.org/10.1016/0168-1656(96)01547-7

    Article  CAS  Google Scholar 

  3. Walker J, Karnati P, Miller DR, Al-Hashem M, Akbar SA, Morris PA (2020) A new open-access online database for resistive-type gas sensor properties and performance. Sens Actuators B Chem 321:128591–128599. https://doi.org/10.1016/J.SNB.2020.128591

    Article  CAS  Google Scholar 

  4. Wang L et al (2019) Directly transforming SnS2 nanosheets to hierarchical SnO2 nanotubes: towards sensitive and selective sensing of acetone at relatively low operating temperatures. Sens Actuators B Chem 292:148–155. https://doi.org/10.1016/J.SNB.2019.04.127

    Article  CAS  Google Scholar 

  5. Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys Rev B Condens Matter Mater Phys 77(12):125416–125421. https://doi.org/10.1103/PHYSREVB.77.125416

    Article  ADS  Google Scholar 

  6. Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T, Nakatani N (2009) Influence of effective surface area on gas sensing properties of WO3 sputtered thin films. Thin Solid Films 517(6):2069–2072. https://doi.org/10.1016/J.TSF.2008.10.021

    Article  ADS  CAS  Google Scholar 

  7. Ghanbari R, Safaiee R, Sheikhi MH, Golshan MM, Horastani ZK (2019) Graphene decorated with silver nanoparticles as a low-temperature methane gas sensor. ACS Appl Mater Interfaces 11(24):21795–21806. https://doi.org/10.1021/ACSAMI.9B00625

    Article  CAS  PubMed  Google Scholar 

  8. Chakraborty M, Hashmi MSJ (2018) Graphene as a material – an overview of its properties and characteristics and development potential for practical applications. Ref Module Mater Sci Mater Eng. https://doi.org/10.1016/B978-0-12-803581-8.10319-4

    Article  Google Scholar 

  9. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162. https://doi.org/10.1103/REVMODPHYS.81.109

    Article  ADS  CAS  Google Scholar 

  10. Ali A, Khan ZS, Jamil M, Khan Y, Ahmad N, Ahmed S (2018) Simultaneous reduction and sulfonation of graphene oxide for efficient hole selectivity in polymer solar cells. Curr Appl Phys 18(5):599–610. https://doi.org/10.1016/J.CAP.2018.02.016

    Article  ADS  Google Scholar 

  11. Wang H, Zhao Z, Liu P, Guo X (2022) A soft and stretchable electronics using laser-induced graphene on polyimide/PDMS composite substrate. NPJ Flex Electron 6(1):1–10. https://doi.org/10.1038/s41528-022-00161-z

    Article  CAS  Google Scholar 

  12. Stanford MG, Yang K, Chyan Y, Kittrell C, Tour JM (2019) Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 13(3):3474–3482. https://doi.org/10.1021/ACSNANO.8B09622

    Article  CAS  PubMed  Google Scholar 

  13. Lee Y et al (2023) Ultra-thin light-weight laser-induced-graphene (LIG) diffractive optics. Light Sci Appl 12(1):1–33. https://doi.org/10.1038/s41377-023-01143-0

    Article  MathSciNet  CAS  Google Scholar 

  14. Martinelli LA, Filoso S (2007) Polluting effects of Brazil’s sugar-ethanol industry. Nature 445(7126):364–364. https://doi.org/10.1038/445364c

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Semenov IP, Men’shchikov VA, Sycheva OI (2020) Pilot tests of a catalyst for the production of ethyl acetate from ethanol. Catal Ind 12(4):287–291. https://doi.org/10.1134/S2070050420040066

    Article  Google Scholar 

  16. Taylor JE et al (2005) Effect of processing route and acetone pre-treatment on the biostability of pellethane materials used in medical device applications. Biomaterials 26(33):6467–6476. https://doi.org/10.1016/J.BIOMATERIALS.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  17. Fujino A et al (1992) Biological monitoring of workers exposed to acetone in acetate fibre plants. Occup Environ Med 49(9):654–657. https://doi.org/10.1136/OEM.49.9.654

    Article  CAS  Google Scholar 

  18. Wu JM (2010) A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires. Nanotechnology 21(23):235501. https://doi.org/10.1088/0957-4484/21/23/235501

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zhao Q, Gao Y, Bai X, Wu C, Xie Y (2006) Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts. Eur J Inorg Chem 2006(8):1643–1648. https://doi.org/10.1002/EJIC.200500975

    Article  Google Scholar 

  20. Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125(52):16176–16177. https://doi.org/10.1021/JA037743F

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W et al (2014) Single porous SnO2 microtubes templated from Papilio maacki bristles: new structure towards superior gas sensing. J Mater Chem A Mater 2(13):4543–4550. https://doi.org/10.1039/C3TA13845C

    Article  ADS  CAS  Google Scholar 

  22. Zhang D, Liu A, Chang H, Xia B (2014) Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2 -reduced graphene oxide hybrid composite. RSC Adv 5(4):3016–3022. https://doi.org/10.1039/C4RA10942B

    Article  ADS  CAS  Google Scholar 

  23. Xie Y (2022) Simulation calculation verification of graphene oxide-decorated silver nanoparticles growing on titania nanotube array as SERS sensor substrate. Chemosensors 10(12):507–516. https://doi.org/10.3390/CHEMOSENSORS10120507

    Article  CAS  Google Scholar 

  24. Goutham S, Jayarambabu JPN, Rao KV (2021) Few layer graphene/silver nanocomposite based flexible and resistive liquefied petroleum gas sensor. J Mater Sci Mater Electron 32(19):23889–23899. https://doi.org/10.1007/S10854-021-06835-0

    Article  CAS  Google Scholar 

  25. Martins PM et al (2018) TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: a computer modeling and experimental study. Compos B Eng 145:39–46. https://doi.org/10.1016/J.COMPOSITESB.2018.03.015

    Article  CAS  Google Scholar 

  26. Gillespie PNO, Martsinovich N (2019) Origin of charge trapping in TiO2/Reduced graphene oxide photocatalytic composites: insights from theory. ACS Appl Mater Interfaces 11(35):31909–31922. https://doi.org/10.1021/ACSAMI.9B09235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghanbari R, Safaiee R, Golshan MM (2018) A dispersion-corrected DFT investigation of CH4 adsorption by silver-decorated monolayer graphene in the presence of ambient oxygen molecules. Appl Surf Sci 457:303–314. https://doi.org/10.1016/J.APSUSC.2018.06.271

    Article  ADS  CAS  Google Scholar 

  28. Mohammadi-Manesh E, Ahmadvand N, Rahmani S (2023) Ag-doped monolayer and bilayer graphene for the gas sensor and purifier of industrial oils. Comput Theor Chem 1228:114274–114279. https://doi.org/10.1016/J.COMPTC.2023.114274

    Article  CAS  Google Scholar 

  29. Ali A, Piatkowski P, Nawaz T, Ahmad S, Ibrahim T, Khamis M, Alnaser AS (2023) A two-step femtosecond laser-based deposition of robust corrosion-resistant molybdenum oxide coating. Materials 16(3):909–924. https://doi.org/10.3390/MA16030909

  30. Nawaz T, Ali A, Ahmad S, Piatkowski P, Alnaser AS (2023) Enhancing anticorrosion resistance of aluminum alloys using femtosecond laser-based surface structuring and coating. Nanomaterials 13(4):644–657. https://doi.org/10.3390/NANO13040644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. “Nitrogen | XPS Periodic Table | Thermo Fisher Scientific - AE.” Accessed: Sep. 27, 2023. [Online]. Available: https://www.thermofisher.com/ae/en/home/materials-science/learning-center/periodic-table/non-metal/nitrogen.html

  32. Johra FT, Lee JW, Jung WG (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20(5):2883–2887. https://doi.org/10.1016/J.JIEC.2013.11.022

    Article  CAS  Google Scholar 

  33. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246. https://doi.org/10.1038/nnano.2013.46

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Akhavan O, Ghaderi E, Hashemi E, Rahighi R (2014) Ultra-sensitive detection of leukemia by graphene. Nanoscale 6(24):14810–14819. https://doi.org/10.1039/C4NR04589K

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Hwangbo Y et al (2014) Interlayer non-coupled optical properties for determining the number of layers in arbitrarily stacked multilayer graphenes. Carbon N Y 77:454–461. https://doi.org/10.1016/J.CARBON.2014.05.050

    Article  CAS  Google Scholar 

  36. Yao Y, Wei Y, Chen S (2015) Size effect of the surface energy density of nanoparticles. Surf Sci 636:19–24. https://doi.org/10.1016/J.SUSC.2015.01.016

    Article  ADS  CAS  Google Scholar 

  37. Lin Z, Ba DC, Liu CM (2012) Surface energy and work of adhesion of titania-related materials. Phys Proced 32:580–589. https://doi.org/10.1016/J.PHPRO.2012.03.604

    Article  ADS  CAS  Google Scholar 

  38. Nakamura M, Sirghi L, Aoki T, Hatanaka Y (2002) Study on hydrophilic property of hydro-oxygenated amorphous TiOx: OH thin films. Surf Sci 507:778–782. https://doi.org/10.1016/S0039-6028(02)01352-3

    Article  ADS  Google Scholar 

  39. Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K (1999) Studies of surface wettability conversion on TiO2 single-crystal surfaces. J Phys Chem B 103(12):2188–2194. https://doi.org/10.1021/jp983386x

    Article  CAS  Google Scholar 

  40. Anandan S, Narasinga Rao T, Sathish M, Rangappa D, Honma I, Miyauchi M (2013) Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. ACS Appl Mater Interfaces 5(1):207–212. https://doi.org/10.1021/am302557z

    Article  CAS  PubMed  Google Scholar 

  41. Somlyai-Sipos L, Baumli P (2022) Wettability of metals by water. Metals 12(8):1274. https://doi.org/10.3390/MET12081274

    Article  CAS  Google Scholar 

  42. Gautam M, Jayatissa AH (2012) Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid State Electron 78:159–165. https://doi.org/10.1016/J.SSE.2012.05.059

    Article  ADS  CAS  Google Scholar 

  43. Nemade KR, Waghuley SA (2013) Chemiresistive gas sensing by few-layered graphene. J Electron Mater 42(10):2857–2866. https://doi.org/10.1007/S11664-013-2699-4

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the American University of Sharjah through the FRG23-C-S56 Grant.

Author information

Authors and Affiliations

Authors

Contributions

ASA and GB conceived the experiment. GB, AAB, and AA performed the experiment and analysed the data. ASA supervised the project. All authors contributed to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Ganjaboy Boltaev or Ali S. Alnaser.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Andréa de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, A.A., Boltaev, G., Ali, A. et al. High sensitivity low-temperature ethanol and acetone gas sensors based on silver/titanium oxide decorated laser-induced graphene. J Mater Sci 59, 4198–4208 (2024). https://doi.org/10.1007/s10853-024-09503-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09503-w

Navigation