Skip to main content

Advertisement

Log in

Porous high-entropy (Zr0.25Hf0.25Nb0.25Ti0.25)C with high strength and uniform pore structure fabricated by freeze-casting

  • Lightweight Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultra-high temperature ceramics (UHTCs) are considered as promising thermal insulation materials applied in ultra-high temperature environments (> 2000 °C). However, the high thermal conductivity and high density limit their further development and application. Herein we adopt the strategies of introducing porous structure and high-entropy effect to solve the above problems. Thus porous high-entropy (Zr0.25Hf0.25Nb0.25Ti0.25)C ceramics were prepared. In order to obtain the uniform pore structure and high mechanical property, the camphene-based freeze-casting method was used in this study. The as-prepared porous samples exhibit high porosity of 92.01–73.57% and homogeneously interconnected pore structure with average pore size of 40.8–19.6 μm. Besides, this work realizes the aims of lightweight (0.65–2.15 g/cm3) and low thermal conductivity (0.29–1.53 W/(m·K)). More importantly, porous samples still have the merit of high compressive strength (0.38–29.02 MPa) due to the even microstructure. The results show that highly porous high-entropy (Zr0.25Hf0.25Nb0.25Ti0.25)C with good overall properties can be an excellent candidate material for ultra-high temperature thermal insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fahrenholtz WG, Hilmas GE (2017) Ultra-high temperature ceramics: materials for extreme environments. Scr Mater 129:94–99. https://doi.org/10.1016/j.scriptamat.2016.10.018

    Article  CAS  Google Scholar 

  2. Paul A, Jayaseelan DD, Venugopal S, Zapata-Solvas E, Binner J, Vaidhyanathan B, Heaton A, Brown P, Lee WE (2012) UHTC composites for hypersonic applications. Am Ceram Soc Bull 91:22–28. https://doi.org/10.1002/9781118700853.ch7

    Article  CAS  Google Scholar 

  3. Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15:804–809. https://doi.org/10.1038/nmat4687

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Yan XL, Constantin L, Lu YF, Silvain JF, Nastasi M, Cui B (2018) (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J Am Ceram Soc 101:4486–4491. https://doi.org/10.1111/jace.15779

    Article  CAS  Google Scholar 

  5. Meng H, Yu RW, Tang ZY, Wen ZH, Chu YH (2023) Formation ability descriptors for high-entropy carbides established through high-throughput methods and machine learning. Cell Rep Phys Sci 4:101512. https://doi.org/10.1016/j.xcrp.2023.101512

    Article  CAS  Google Scholar 

  6. Liu DB, Shi BL, Geng LY, Wang YG, Xu BS, Chen YF (2022) High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings. J Adv Ceram 11:961–973. https://doi.org/10.1007/s40145-022-0589-z

    Article  CAS  Google Scholar 

  7. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides. Nat Commun 6:8485. https://doi.org/10.1038/ncomms9485

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Xiang HM, Xing Y, Dai FZ, Wang HJ, Su L, Miao L, Zhang GJ, Wang YG, Qi XW, Yao L, Wang HL, Zhao B, Li JQ, Zhou YC (2021) High-entropy ceramics: present status, challenges, and a look forward. J Adv Ceram 10:385–441. https://doi.org/10.1007/s40145-021-0477-y

    Article  CAS  Google Scholar 

  9. Ma MD, Sun YA, Wu YJ, Zhao ZS, Ye L, Chu YH (2022) Nanocrystalline high-entropy carbide ceramics with improved mechanical properties. J Am Ceram Soc 105:606–613. https://doi.org/10.1111/jace.18100

    Article  CAS  Google Scholar 

  10. Liu XY, Zhang P, Huang MZ, Han Y, Xu N, Li Y, Zhang ZJ, Pan W, Wan CL (2023) Effect of lattice distortion in high-entropy RE2Si2O7 and RE2SiO5 (RE=Ho, Er, Y, Yb, and Sc) on their thermal conductivity: experimental and molecular dynamic simulation study. J Eur Ceram Soc 43:6407–6415. https://doi.org/10.1016/j.jeurceramsoc.2023.06.052

    Article  CAS  Google Scholar 

  11. Ye BL, Wen TQ, Nguyen MC, Hao LY, Wang CZ, Chu YH (2019) First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater. 170:15–23. https://doi.org/10.1016/j.actamat.2019.03.021

    Article  ADS  CAS  Google Scholar 

  12. Gong LL, Wang YH, Cheng XD, Zhang RF, Zhang HP (2013) Thermal conductivity of highly porous mullite materials. Int J Heat Mass Transf 67:253–259. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.008

    Article  CAS  Google Scholar 

  13. Chen H, Xiang HM, Dai FZ, Liu JC, Zhou YC (2019) Low thermal conductivity and high porosity ZrC and HfC ceramics prepared by in-situ reduction reaction/partial sintering method for ultrahigh temperature applications. J Mater Sci Technol 35:2778–2784. https://doi.org/10.1016/j.jmst.2019.05.044

    Article  CAS  Google Scholar 

  14. Chen Y, Wang NN, Ola O, Xia YD, Zhu YQ (2021) Porous ceramics: light in weight but heavy in energy and environment technologies. Mat Sci Eng R 143:100589. https://doi.org/10.1016/j.mser.2020.100589

    Article  Google Scholar 

  15. Wu Z, Liang XP, Shao ZJ, Chen HK, Li JN, Wang JY (2021) Highly porous multicomponent (Hf1/3Ta1/3Nb1/3)C ultra-high temperature ceramic with low thermal conductivity. Materialia 18:101158. https://doi.org/10.1016/j.mtla.2021.101158

    Article  CAS  Google Scholar 

  16. Hammel EC, Ighodaro OLR, Okoli OI (2014) Processing and properties of advanced porous ceramics: an application based review. Ceram Int 40:15351–15370. https://doi.org/10.1016/j.ceramint.2014.06.095

    Article  CAS  Google Scholar 

  17. Shao GF, Hanaor DAH, Shen XD, Gurlo A (2020) Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv Mater 32:1907176. https://doi.org/10.1002/adma.201907176

    Article  CAS  Google Scholar 

  18. Du JC, Zhang XH, Hong CQ, Han WB (2013) Microstructure and mechanical properties of ZrB2-SiC porous ceramic by camphene-based freeze casting. Ceram Int 39:953–957. https://doi.org/10.1016/j.ceramint.2012.07.012

    Article  CAS  Google Scholar 

  19. Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10:155–169. https://doi.org/10.1002/adem.200700270

    Article  CAS  Google Scholar 

  20. Silvestroni L, Sciti D (2010) Sintering behavior, microstructure, and mechanical properties: a comparison among pressureless sintered ultra-refractory carbides. Adv Mater Sci Eng 2010:1–11. https://doi.org/10.1155/2010/835018

    Article  CAS  Google Scholar 

  21. Castle E, Csanadi T, Grasso S, Dusza J, Reece M (2018) Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep 8:8609. https://doi.org/10.1038/s41598-018-26827-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du B, Liu HH, Chu YH (2020) Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders. J Am Ceram Soc 103:4063–4068. https://doi.org/10.1111/jace.17134

    Article  CAS  Google Scholar 

  23. Sciti D, Guicciardi S, Nygren M (2008) Spark plasma sintering and mechanical behaviour of ZrC-based composites. Scr Mater 59:638–641. https://doi.org/10.1016/j.scriptamat.2008.05.026

    Article  CAS  Google Scholar 

  24. Yang QQ, Wang XQ, Bao WC, Wu P, Wang XF, Guo XJ, Zhang C, Zhang GJ, Jiang DY (2022) Influence of equiatomic Zr/(Ti, Nb) substitution on microstructure and ultra-high strength of (Ti, Zr, Nb)C medium-entropy ceramics at 1900 °C. J Adv Ceram 11:1457–1465. https://doi.org/10.1007/s40145-022-0623-1

    Article  CAS  Google Scholar 

  25. Zhang X, Hilmas GE, Fahrenholtz WG, Deason DM (2007) Hot pressing of tantalum carbide with and without sintering additives. J Am Ceram Soc 90:393–401. https://doi.org/10.1111/j.1551-2916.2006.01416.x

    Article  CAS  Google Scholar 

  26. Zhao LY, Jia DC, Duan XM, Yang ZH, Zhou Y (2011) Pressureless sintering of ZrC-based ceramics by enhancing powder sinterability. Int J Refract Met Hard Mater 29:516–521. https://doi.org/10.1016/j.ijrmhm.2011.03.001

    Article  CAS  Google Scholar 

  27. Ghaffari SA, Faghihi-Sani MA, Golestani-Fard F, Mandal H (2013) Spark plasma sintering of TaC-HfC UHTC via disilicides sintering aids. J Eur Ceram Soc 33:1479–1484. https://doi.org/10.1016/j.jeurceramsoc.2013.01.017

    Article  CAS  Google Scholar 

  28. Yu D, Yin J, Zhang BH, Liu XJ, Reece MJ, Liu W, Huang ZR (2021) Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: the effect of pyrolytic carbon. J Eur Ceram Soc 41:3823–3831. https://doi.org/10.1016/j.jeurceramsoc.2021.01.048

    Article  CAS  Google Scholar 

  29. Shao ZJ, Wu Z, Sun LC, Liang XP, Luo ZP, Chen HK, Li JN, Wang JY (2022) High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties. J Mater Sci Technol 119:190–199. https://doi.org/10.1016/j.jmst.2021.12.030

    Article  CAS  Google Scholar 

  30. Qin Y, Liu JX, Liang YC, Zhang GJ (2022) Equiatomic 9-cation high-entropy carbide ceramics of the IVB, VB, and VIB groups and thermodynamic analysis of the sintering process. J Adv Ceram 11:1082–1092. https://doi.org/10.1007/s40145-022-0594-2

    Article  CAS  Google Scholar 

  31. Zhang Y, Sun SK, Guo WM, Xu L, Zhang W, Lin HT (2020) Optimal preparation of high-entropy boride-silicon carbide ceramics. J Adv Ceram 10:173–180. https://doi.org/10.1007/s40145-020-0418-1

    Article  CAS  Google Scholar 

  32. Luo SC, Guo WM, Zhou YZ, Plucknett K, Lin HT (2021) Textured and toughened high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCw ceramics. J Mater Sci Technol 94:99–103. https://doi.org/10.1016/j.jmst.2021.02.073

    Article  CAS  Google Scholar 

  33. Yoon BH, Park CS, Kim HE, Koh YH (2007) In situ synthesis of porous silicon carbide (SiC) ceramics decorated with SiC nanowires. J Am Ceram Soc 90:3759–3766. https://doi.org/10.1111/j.1551-2916.2007.02037.x

    Article  CAS  Google Scholar 

  34. Chen H, Xiang HM, Dai FZ, Liu JC, Lei YM, Zhang J, Zhou YC (2019) High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J Mater Sci Technol 35:1700–1705. https://doi.org/10.1016/j.jmst.2019.04.006

    Article  CAS  Google Scholar 

  35. Li F, Kang Z, Huang X, Wang XG, Zhang GJ (2014) Preparation of zirconium carbide foam by direct foaming method. J Eur Ceram Soc 34:3513–3520. https://doi.org/10.1016/j.jeurceramsoc.2014.05.029

    Article  CAS  Google Scholar 

  36. Wang SJ, Liu MW, Liu XH, Jia QL, Zhang SW (2022) Carbothermal reduction synthesis of high porosity and low thermal conductivity ZrC-SiC ceramics via an one-step sintering technique. J Eur Ceram Soc 42:4465–4471. https://doi.org/10.1016/j.jeurceramsoc.2022.04.044

    Article  CAS  Google Scholar 

  37. Ashby MF (1983) The mechanical properties of cellular solids. Metall Trans A 14:1755–1769. https://doi.org/10.1007/Bf02645546

    Article  Google Scholar 

  38. Lu K, Liu JX, Wei XF, Bao WC, Wu Y, Li F, Xu FF, Zhang GJ (2020) Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase. J Eur Ceram Soc 40:1839–1847. https://doi.org/10.1016/j.jeurceramsoc.2019.12.056

    Article  CAS  Google Scholar 

  39. Russell HW (1935) Principles of heat flow in porous insulators. J Am Ceram Soc 18:1–5. https://doi.org/10.1111/j.1151-2916.1935.tb19340.x

    Article  CAS  Google Scholar 

  40. Yan NN, Fu QG, Zhang YY, Li K, Xie W, Zhang JP, Zhuang L, Shi XH (2020) Preparation of pore-controllable zirconium carbide ceramics with tunable mechanical strength, thermal conductivity and sound absorption coefficient. Ceram Int 46:19609–19616. https://doi.org/10.1016/j.ceramint.2020.05.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. U21A2063, 52372071; National Key R&D Program of China under Grant No. 2021YFB3702300; LiaoNing Revitalization Talents Program under Grant No. XLYC2002018; and Natural Science Foundation of Liaoning Province under Grant No. 2022-MS-007. The author thanks Doctor Zhuojie Shao and Master Qiaoqi Zhou for the help of discussion for experimental procedures and some TEM works.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Wu or Jingyang Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Zhou, J., Wu, Z. et al. Porous high-entropy (Zr0.25Hf0.25Nb0.25Ti0.25)C with high strength and uniform pore structure fabricated by freeze-casting. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09456-0

Navigation