Skip to main content

Advertisement

Log in

A review on enhancing luminescence and colorimetric sensing in chitosan-based sensors with doping with organic and inorganic materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chitosan luminescent and colorimetric sensors based on organic and inorganic doped materials have shown great potential in various applications such as environmental monitoring, food safety, and biomedical research. Chitosan contains numerous free amino and hydroxyl groups that are easy to functionalize and change, and with excellent properties such as biodegradability and biocompatibility, that can act as a host molecule in sensors, forming supramolecular complexes with various guest molecules. The use of additives can significantly improve the sensitivity and selectivity of the sensor, making it a promising tool for the development of highly sensitive and selective detection systems. Furthermore, the low cost and easy fabrication of these sensors make them an attractive choice for practical applications in resource-constrained settings. This article provides an overview of the preparation and applications of chitosan-based fluorescent and colorimetric sensors and the effects of doping on its operations are being studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Mak YW, Leung WWF (2019) Crosslinking of genipin and autoclaving in chitosan-based nanofibrous scaffolds: structural and physiochemical properties. J Mater Sci 54:10941–10962. https://doi.org/10.1007/s10853-019-03649-8

    Article  ADS  CAS  Google Scholar 

  2. Motelica L, Ficai D, Ficai A, Truşcă R, Ilie C, Oprea O, Andronescu E (2020) Innovative antimicrobial chitosan/ZnO/Ag NPs/ citronella essential oil nanocomposite_potential coating for grapes. Foods 9(12):1801–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turco BO, Boni FI, Gremião MPD, Chorilli M (2021) Nanostructured polyelectrolyte complexes based on chitosan and sodium alginate containing rifampicin for the potential treatment of tuberculosis. Drug Dev Ind Pharm 47:1904–1914

    Article  CAS  PubMed  Google Scholar 

  4. Nakal-Chidiac A, Garciıa O, Garcia-Fernandez L, Martin- Saavedra FM, Sanchez-Casanova S, Escudero-Duch C, San Roaman J, Vilaboa N, Aguilar MR (2020) Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties. Carbohydr Polym 250:116973

    Article  CAS  PubMed  Google Scholar 

  5. Rasool B, Zubair M, Khan MA, Ramzani PMA, Dradrach A, Turan V, Iqbal M, Khan SA, Tauqeer HM, Farhad M et al (2022) Synergetic efficacy of amending Pb-polluted soil with P-loaded jujube (Ziziphus mauritiana) twigs biochar and foliar chitosan application for reducing Pb distribution in moringa leaf extract and improving its anti-cancer potential. Water Air Soil Pollut 233:344

    Article  ADS  CAS  Google Scholar 

  6. Abourehab MA, Pramanik S, Abdelgawad MA, Abualsoud BM, Kadi A, Ansari MJ, Deepak A (2022) Recent advances of chitosan formulations in biomedical applications. Int J Mol Sci 23:10975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lv S, Liang S, Zuo J, Zhang S, Wei D (2022) Preparation and application of chitosan based fluorescent probes. Analyst 147:4657–4673

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Urbaniak T, Garcia-Briones GS, Zhigunov A, Hladysh S, Adrian E, Lobaz V, Krunclova T, Janouskova O, Pop- Georgievski O, Kubies D (2022) Quaternized chitosan/heparin polyelectrolyte multilayer films for protein delivery. Biomacromolecules 23:4734–4748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferreira DCM, Ferreira SO, de Alvarenga ES, Soares NFF, dos Reis Coimbra JS, de Oliveira EB (2022) Polyelectrolyte complexes (PECs) obtained from chitosan and carboxymethylcellulose: a physicochemical and microstructural study. Carbohydr Polym Technol Appl 3:100197

    CAS  Google Scholar 

  10. Kushwaha CS, Shukla SK (2019) Non-enzymatic potentiometric malathion sensing over chitosan-grafted polyaniline hybrid electrode. J Mater Sci 54:10846–10855. https://doi.org/10.1007/s10853-019-03625-2

    Article  ADS  CAS  Google Scholar 

  11. Rajeev KK, Jang W, Kim S, Kim T-H (2022) Chitosan-grafted-gallic acid as a nature- inspired multifunctional binder for high- performance silicon anodes in lithium-ion batteries. ACS Appl Energy Mater 5:3166–3178

    Article  Google Scholar 

  12. Zhao H, Liu G, You S, Camargo FV, Zavelani-Rossi M, Wang X, Sun C, Liu B, Zhang Y, Han G et al (2021) Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ Sci 14:396–406

    Article  CAS  Google Scholar 

  13. Zhao H, Sun R, Wang Z, Fu K, Hu X, Zhang Y (2019) Zero- dimensional perovskite nanocrystals for efficient luminescent solar concentrators. Adv Funct Mater 29:1902262

    Article  Google Scholar 

  14. Magesh G, Bhoopathi G, Nithya N, Arun A, Kumar ER (2018) Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles. Superlattices Microstruct 117:36–45

    Article  ADS  CAS  Google Scholar 

  15. Zhang B, Dong X, Zhou Q, Lu S, Zhang X, Liao Y, Yang Y, Wang H (2021) Carboxymethyl chitosan−promoted luminescence of lanthanide metallogel and its application in assay of multiple metal ions. Carbohydr Polym 263:117986

    Article  CAS  PubMed  Google Scholar 

  16. Wu Q, Zhang S, Li S, Yan Y, Yu S, Zhao R, Huang L (2022) Chitosan-based carbon dots with multi-color-emissive tunable fluorescence and visible light catalytic enhancement properties. Nano Res 16:1–11

    Google Scholar 

  17. Alves R, Sentanin F, Sabadini R, Pawlicka A, Silva MM (2018) Green polymer electrolytes of chitosan doped with erbium triflate. J Non-Cryst Solids 482:183–191

    Article  ADS  CAS  Google Scholar 

  18. Kakhki RM, Rakhshanipour M (2019) Application of nanoparticle modified with crown ether in colorimetric determinations. Arab J Chem 12(8):3096–3107

    Article  Google Scholar 

  19. Wan Y, Li Y, Xu Z (2021) Chitosan-based colorimetric biosensing of glucose: a review. Int J Biol Macromol 166:351–361

    Google Scholar 

  20. An C, Zhang M, Xiao Z, Yang Q, Feng L, Li S, Shi M (2023) Lignocellulose/chitosan hybrid aerogel composited with fluorescence molecular probe for simultaneous adsorption and detection of heavy metal pollutants. J Environ Chem Eng 11(6):111205

    Article  CAS  Google Scholar 

  21. Chen X, Li P, Kong L (2018) Chitosan-based biosensors: principles, designs and applications. Polymers 10(3):267

    Google Scholar 

  22. Zhang X, Li X, Li Y, Zhang L, Liu Q, Lin J (2019) A chitosan-based colorimetric sensor for rapid and sensitive detection of formaldehyde. Carbohydr Polym 224:115186

    Google Scholar 

  23. Chen H, Wang J, Wang X et al (2014) Label-free colorimetric detection of mercury ions in water using unmodified silver nanoparticles. Biosens Bioelectron 55:33–37

    Google Scholar 

  24. Zhang Y, Zhang Y, Li J et al (2014) Chitosan-modified silver nanoparticles for colorimetric detection of mercury ions. Mater Sci Eng C Mater Biol Appl 40:390–396

    Google Scholar 

  25. Li B, Li T, Liu Y et al (2019) Colorimetric detection of mercury ions based on the anti-aggregation of gold nanoparticles induced by chitosan. Carbohydr Polym 211:80–87

    Google Scholar 

  26. Li B, Li T, Liu Y et al (2019) A label-free colorimetric sensor for Hg2+ based on chitosan-capped gold nanoparticles. J Nanopart Res 21(9):202

    Google Scholar 

  27. Huang L, Wang Y, Wang Y et al (2020) Chitosan/metal-organic framework composite-based colorimetric sensor for the detection of nitrobenzene. J Hazard Mater 396:122587

    Google Scholar 

  28. Li Y, Liu X, Liu J et al (2019) Chitosan-based colorimetric sensor for rapid and sensitive detection of chromium(VI) in aqueous solution. Int J Biol Macromol 121:1019–1024

    Google Scholar 

  29. Nguyen SH, Vu PKT, Nguyen HM, Tran MT (2023) Optical glucose sensors based on chitosan-capped ZnS-doped Mn nanomaterials. Sensors 23:2841. https://doi.org/10.3390/s23052841

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Al-Kadhi NS, Hefnawy MA, Nafee S, Alamro FS, Pashameah RA, Ahmed HA, Medany SS (2023) Zinc nanocomposite supported chitosan for nitrite sensing and hydrogen evolution applications. Polymers 15:2357. https://doi.org/10.3390/polym15102357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Begum S, Pandian R, Aswal VK, Ramasamy RP (2014) Chitosan−gold−lithium nanocomposites as solid polymer electrolyte. J Nanosci Nanotechnol 14:5761–5773

    Article  CAS  PubMed  Google Scholar 

  32. Salman A, Abdullah OG, Hanna RR, Aziz SB (2018) Conductivity and electrical properties of chitosan – methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate. Int J Electrochem Sci 13:3185–3199

    Article  CAS  Google Scholar 

  33. Gurumendi M, Lopez F, Borrero-Gonzalez LJ, Terencio T, Caetano M, Reinoso C, Gonzalez G (2023) Enhanced chitosan photoluminescence by incorporation of lithium perchlorate. ACS Omega 8:13763–13774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodrigues GLC, de Oliveira TG, Gusmao SBS, Marques TMF, Ferreira OP, Ghosh A, dos Santos CC, Milani R, Garcia RRP, Viana BC (2022) Titanate nanotubes: effect of rare earth insertion, thermal treatment and their optical properties. Opt Mater 127:112302

    Article  CAS  Google Scholar 

  35. Liu GK (2015) Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem Soc Rev 44:1635–1652

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Kou XY, Meng FQ, Chen K, Wang TS, Sun P, Liu FM, Yan X, Sun YF, Liu FM, Shimanoe K, Lu GY (2020) High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sensor Actuator B Chem 320:128292

    Article  CAS  Google Scholar 

  37. Tan Q, An XX, Pan S, Zhen SJ, Hu YM, Hu XL (2022) One-pot hydrothermal method synthesis carbon dots as a fluorescent sensor for the sensitive and selective detection of clioquinol. Opt Mater 123:111830

    Article  CAS  Google Scholar 

  38. Liu WS, Li DP, Wang F, Chen XY, Wang XQ, Tian Y (2022) A luminescent lanthanide MOF as highly selective and sensitive fluorescent probe for nitrobenzene and Fe3+. Opt Mater 123:111895

    Article  CAS  Google Scholar 

  39. Yan XH, Wang YX, Li BY, Huang ZZ, Gao ZY, Mao XH, Wang W, Zhu ZJ, Kipper MJ, Huang LJ, Tang JG (2022) Polyacrylonitrile fluorescent nanofibers for selective and reversible copper detection in aqueous solutions. Appl Surf Sci 602:21659–21684

    Article  Google Scholar 

  40. Yan XH, Xiao X, Au C, Mathur S, Huang LJ, Wang YX, Zhang ZJ, Zhu ZJ, Kipper MJ, Tang JG, Chen J (2021) Electrospinning nanofibers and nanomembranes for oil/water separation. J Mater Chem 9:21659–21684

    Article  CAS  Google Scholar 

  41. Huang Z, Wang Y, Yan X, Mao X, Gao Z, Kipper MJ, Huang L, Tang J (2023) Stable chitosan fluorescent nanofiber sensor containing Eu3+ complexes for detection of copper ion. Opt Mater 135:113245

    Article  CAS  Google Scholar 

  42. El-Wakeel NMH, Tawfik SM, Abd-Elaal AA, Moustafa YM, Khalil MMH (2023) Chitosan-based fluorescein amphiphile macromolecular sensor for Hg2+ detection. J Mol Liq 380:121744

    Article  CAS  Google Scholar 

  43. Yang J, Ren Z, Chen B, Fang M, Zhao Z, Tang BZ, Peng Q, Li Z (2017) Three polymorphs of one luminogen: how the molecular packing affects the RTP and AIE properties? J Mater Chem C 5:9242–9246

    Article  CAS  Google Scholar 

  44. Chang Z, Feng J, Zheng X (2020) A highly sensitive fluorescence sensor based on lucigenin/chitosan/SiO2 composite nanoparticles for microRNA detection using magnetic separation. Luminescence 35:1–10

    Article  Google Scholar 

  45. Miao M, Lan Mu, Cao S, Yang Y, Feng X (2022) Dual-functional CDs@ZIF-8/chitosan luminescent film sensors for simultaneous detection and adsorption of tetracycline. Carbohyd Polym 291:119587

    Article  CAS  Google Scholar 

  46. Wu Q, Zhang S, Li S et al (2023) Chitosan-based carbon dots with multi-color-emissive tunable fluorescence and visible light catalytic enhancement properties. Nano Res 16:1835–1845

    Article  ADS  CAS  Google Scholar 

  47. Zheng Xu, Chen Xi, Xudong Yu, Yang Y (2023) Sensing formic acid with a water-based chitosan lanthanide luminescence film. J Ind Eng Chem 125:144–150

    Article  CAS  Google Scholar 

  48. Bai W, Liu J, Chen A (2014) Gold nanoparticle based colorimetry and its application in rapid detection for food safety. J Food Saf Qual 5(7):1943–1950

    CAS  Google Scholar 

  49. Jia M, Feng L (2013) Progress in optical colorimetric/fluorometric sensor array. Chin J Anal Chem 5(41):795–802

    Article  Google Scholar 

  50. Zhang S, Wei S, Cheng H, Rong B (2020) A highly sensitive colorimetric sensor for Hg2+ detection based on the oxidative enzyme mimics-like activity of hierarchical porous carbon@chitosan-modified silver nanoparticles. J King Saud Univ. Sci. 32:1265–1271

    Article  Google Scholar 

  51. Huang Q, Zhang H, Hu S, Li F, Weng W, Chen J, Wang Q, He Y, Zhang W, Bao X (2014) A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots–chitosan composite film. Biosens Bioelectron 52:277–280

    Article  CAS  PubMed  Google Scholar 

  52. Sheng M, Gao Y, Sun J, Gao F (2014) Carbon nanodots–chitosan composite film: a platform for protein immobilization, direct electrochemistry and bioelectrocatalysis. Biosens Bioelectron 58:351–358

    Article  CAS  PubMed  Google Scholar 

  53. Tummala S, Lee C-H, Ho Y-P (2021) Boron, and nitrogen co-doped carbon dots as a multiplexing probe for sensing of p-nitrophenol, Fe (III), and temperature. Nanotechnology 32:265502

    Article  ADS  CAS  Google Scholar 

  54. Bandi R, Alle M, Park C-W, Han S-Y, Kwon G-J, Kim N-H, Kim J-C, Lee S-H (2021) Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sens Actuators, B Chem 330:129330

    Article  CAS  Google Scholar 

  55. Zhuo S, Fang J, Zhu C, Du J (2020) Preparation of palladium/carbon dot composites as efficient peroxidase mimics for H2O2 and glucose assay. Anal Bioanal Chem 412:963–972

    Article  CAS  PubMed  Google Scholar 

  56. Tummala S, Bandi R, Ho Y-P (2022) Synthesis of Cu-doped carbon dot/chitosan film composite as a catalyst for the colorimetric detection of hydrogen peroxide and glucose. Microchim Acta 189:284

    Article  CAS  Google Scholar 

  57. Sun H, Liu X, Wang X, Han Q, Qi C, Li Y, Wang C, Chen Y, Yang R (2020) Colorimetric determination of ascorbic acid using a polyallylamine-stabilized IrO2/graphene oxide nanozyme as a peroxidase mimic. Microchim Acta 187:110

    Article  CAS  Google Scholar 

  58. Amanulla B, Palanisamy S, Chen S-M, Chiu T-W, Velusamy V, Hall JM, Chen T-W, Ramaraj SK (2017) Selective colorimetric detection of nitrite in water using chitosan stabilized gold nanoparticles decorated reduced graphene oxide. Sci. Rep. 7:14182. https://doi.org/10.1038/s41598-017-14584-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cao J, Zhang H, Nian Q, Qian Xu (2022) Electrospun chitosan/polyethylene oxide nanofibers mat loaded with copper (II) as a new sensor for colorimetric detection of tetracycline. Int J Biol Macromol 212:527–535

    Article  CAS  PubMed  Google Scholar 

  60. Huang B, Liu Y, Li B, Liu S, Zeng G, Zeng Z, Wang X, Ning Q, Zheng B, Yang C (2017) Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-chitosan/graphene oxide nanocomposite. Carbohydr Polym 157:576–585

    Article  CAS  PubMed  Google Scholar 

  61. Huang ZZ, Wang YX, Huang LJ, Li BY, Yan XH, Wang Y, Kipper MJ, Tang JG (2022) A review of lanthanide-based fluorescent nanofiber membranes by electrospinning and their applications. J Mater Sci 57:3892–3922. https://doi.org/10.1007/s10853-021-06758-5

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the science colleagues at University of Gonabad.

Author information

Authors and Affiliations

Authors

Contributions

The main text of the article and discussions about chitosan and chitosan-based sensors was written by R. Mohammadzadeh Kakhki.

Corresponding author

Correspondence to Roya Mohammadzadeh Kakhki.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh Kakhki, R. A review on enhancing luminescence and colorimetric sensing in chitosan-based sensors with doping with organic and inorganic materials. J Mater Sci 59, 2207–2227 (2024). https://doi.org/10.1007/s10853-024-09338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09338-5

Navigation