Skip to main content
Log in

One-stage synthesis and characterisation of supramolecular silica systems incorporating corrosion inhibitors for gradual release applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supramolecular silica systems, incorporating two different corrosion inhibitors (1H-Benzotriazole, BTA and 5-Phenyl-1H-tetrazole, PT), are successfully obtained via one-stage syntheses by self-assembly and characterised with a multi-analytical approach. Two different surfactants, namely cetyltrimethylammonium bromide (CTAB) or dodecylamine (DDA), are used both as templates and to promote synergistic corrosion inhibition in future application in smart and eco-sustainable coatings for metal substrates. The effect of the two different soft templates and the influence of a co-solvent (ethanol or methanol) on the morphology and the hierarchical porosity structure of the silica systems are investigated by electron microscopy techniques (SEM and TEM) and by nitrogen physisorption (BET/BJH). The confinement of both BTA and PT in mesoporous silica nanoparticles is qualitatively and quantitatively characterised by micro-Raman spectroscopy and thermal analyses. All synthesised composite samples show monodispersed nanoparticles (size in the range 50–500 nm). In the presence of CTAB soft template, spherical nanoparticle with non-intersecting longitudinal porosity is obtained and sphere-to-rod transition with chiral growth of particles is observed after the inhibitor encapsulation. On the contrary, by using DDA soft template, the symmetrical spherical shape of nanoparticles is retained when inhibitor is encapsulated, although with different diameter sizes. Radiant cylindrical-to-conical porosity is observed, depending on the solvent/co-solvent total volume and not influenced by the inhibitor. All supramolecular silica systems are characterised by a high loading capacity (30–40%) including both surfactants and azole compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 1

Copyright 2008 American Chemical Society

Figure 6
Figure 7
Scheme 2
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data and code availability

All data are available by contacting the corresponding author: antonella.privitera@uniroma3.it.

References

  1. Liu T, Ma L, Wang X et al (2021) Self-healing corrosion protective coatings based on micro/nanocarriers: a review. Corros Commun 1:18–25. https://doi.org/10.1016/j.corcom.2021.05.004

    Article  Google Scholar 

  2. Koch G (2017) Cost of corrosion. In: Trends in oil and gas corrosion research and technologies. Elsevier, pp 3–30

  3. Tomashov ND, Chernova GP (1967) Passivity and protection of metals against corrosion. Springer, Boston

    Book  Google Scholar 

  4. Nazeer AA, Madkour M (2018) Potential use of smart coatings for corrosion protection of metals and alloys: a review. J Mol Liq 253:11–22. https://doi.org/10.1016/J.MOLLIQ.2018.01.027

    Article  CAS  Google Scholar 

  5. Saji VS (2019) Supramolecular concepts and approaches in corrosion and biofouling prevention. Corros Rev 37:187–230. https://doi.org/10.1515/corrrev-2018-0105

    Article  CAS  Google Scholar 

  6. Maia F, Tedim J, Lisenkov AD et al (2012) Silica nanocontainers for active corrosion protection. Nanoscale 4:1287. https://doi.org/10.1039/c2nr11536k

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Habib S, Qureshi A, Shakoor RA et al (2022) Corrosion inhibition performance of polyolefin smart self-healing composite coatings modified with ZnO@β-Cyclodextrin hybrid particles. J Market Res 21:3371–3385. https://doi.org/10.1016/J.JMRT.2022.10.148

    Article  CAS  Google Scholar 

  8. Zhang F, Ju P, Pan M et al (2018) Self-healing mechanisms in smart protective coatings: a review. Corros Sci 144:74–88. https://doi.org/10.1016/J.CORSCI.2018.08.005

    Article  ADS  Google Scholar 

  9. Shchukin DG (2013) Container-based multifunctional self-healing polymer coatings. Polym Chem 4:4871. https://doi.org/10.1039/c3py00082f

    Article  CAS  Google Scholar 

  10. Wei H, Wang Y, Guo J et al (2015) Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J Mater Chem A Mater 3:469–480. https://doi.org/10.1039/C4TA04791E

    Article  CAS  Google Scholar 

  11. Fateh A, Aliofkhazraei M, Rezvanian AR (2020) Review of corrosive environments for copper and its corrosion inhibitors. Arab J Chem 13:481–544. https://doi.org/10.1016/J.ARABJC.2017.05.021

    Article  CAS  Google Scholar 

  12. (2000) Health Council of the Netherlands, Dutch Expert Committee on Occupational Standards (DECOS). 1,2,3-Benzotriazole. The Hague

  13. Stupnišek-Lisac E, Božić AL, Cafuk I (1998) Low-toxicity copper corrosion inhibitors. Corrosion 54:713–720. https://doi.org/10.5006/1.3284890

    Article  Google Scholar 

  14. Lu J, WANG MM, WANG Q, et al (2018) Determination of benzotriazole and its derivatives in aqueous sample with air-assisted liquid-liquid microextraction followed by high-performance liquid chromatography. Chin J Anal Chem 46:e1817–e1825. https://doi.org/10.1016/S1872-2040(17)61082-X

    Article  Google Scholar 

  15. Privitera A, Porcelli F, Paoloni D et al (2023) Chemical-physical characterisation of 5-Phenyl-1H-tetrazole inhibitive behaviour: a new non-toxic compound for a sustainable protection of Cu-alloys. J Appl Electrochem 53:2375–2395. https://doi.org/10.1007/s10800-023-01936-6

    Article  CAS  Google Scholar 

  16. Al Kharafi FM, Ghayad IM, Abdullah RM (2012) Corrosion inhibition of copper in non-polluted and polluted sea water using 5-phenyl-1-H-tetrazole. Int J Electrochem Sci 7:3289–3298

    Article  CAS  Google Scholar 

  17. El Ibrahimi B, Guo L (2021) Azole-based compounds as corrosion inhibitors for metallic materials. In: Azoles—synthesis, properties, applications and perspectives. IntechOpen

  18. Olivieri F, Castaldo R, Cocca M et al (2021) Innovative silver-based capping system for mesoporous silica nanocarriers able to exploit a twofold anticorrosive mechanism in composite polymer coatings: tailoring benzotriazole release and capturing chloride ions. ACS Appl Mater Interfaces 13:12. https://doi.org/10.1021/acsami.1c15231

    Article  CAS  Google Scholar 

  19. Falcón JM, Batista FF, Aoki IV (2014) Encapsulation of dodecylamine corrosion inhibitor on silica nanoparticles. Electrochim Acta 124:109–118. https://doi.org/10.1016/J.ELECTACTA.2013.06.114

    Article  Google Scholar 

  20. Falcón JM, Otubo LM, Aoki IV (2016) Highly ordered mesoporous silica loaded with dodecylamine for smart anticorrosion coatings. Surf Coat Technol 303:319–329. https://doi.org/10.1016/J.SURFCOAT.2015.11.029

    Article  Google Scholar 

  21. Ma H, Chen S, Yin B et al (2003) Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions. Corros Sci 45:867–882. https://doi.org/10.1016/S0010-938X(02)00175-0

    Article  CAS  Google Scholar 

  22. Marconi E, Luisetto I, Di Carlo G et al (2023) 3-APTES on dendritic fibrous mesoporous silica nanoparticles for the pH-controlled release of corrosion inhibitors. Nanomaterials 13:2543. https://doi.org/10.3390/nano13182543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma X, Xu L, Wang W et al (2017) Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy. Corros Sci 120:139–147. https://doi.org/10.1016/j.corsci.2017.02.004

    Article  CAS  Google Scholar 

  24. Olivieri F, Castaldo R, Cocca M et al (2021) Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: a critical review. Nanoscale 13:9091–9111. https://doi.org/10.1039/D1NR01899J

    Article  CAS  PubMed  Google Scholar 

  25. Zea C, Alcántara J, Barranco-García R et al (2018) Synthesis and characterization of hollow mesoporous silica nanoparticles for smart corrosion protection. Nanomaterials 8:478. https://doi.org/10.3390/nano8070478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh LP, Bhattacharyya SK, Kumar R et al (2014) Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 214:17–37. https://doi.org/10.1016/J.CIS.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, He J, Tang H, Yan C (2008) Porous silica nanocapsules and nanospheres: dynamic self-assembly synthesis and application in controlled release. Chem Mater 20:5894–5900. https://doi.org/10.1021/cm801411y

    Article  CAS  Google Scholar 

  28. Chan AC, Bravo Cadena M, Townley HE et al (2017) Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms. J R Soc Interface 14:20160650. https://doi.org/10.1098/rsif.2016.0650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Popat A, Liu J, Hu Q et al (2012) Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 4:970–975. https://doi.org/10.1039/C2NR11691J

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Borisova D, Möhwald H, Shchukin DG (2011) Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 5:1939–1946. https://doi.org/10.1021/nn102871v

    Article  CAS  PubMed  Google Scholar 

  31. Zheng Z, Huang X, Schenderlein M et al (2013) Self-healing and antifouling multifunctional coatings based on pH and sulfide ion sensitive nanocontainers. Adv Funct Mater 23:3307–3314. https://doi.org/10.1002/adfm.201203180

    Article  CAS  Google Scholar 

  32. Privitera A, Ruggiero L, Venditti I et al (2022) One step nanoencapsulation of corrosion inhibitors for gradual release application. Mater Today Chem 24:100851. https://doi.org/10.1016/j.mtchem.2022.100851

    Article  CAS  Google Scholar 

  33. Knezevic NZ, Mauriello Jimenez C, Albino M et al (2017) Synthesis and characterization of core-shell magnetic mesoporous silica and organosilica nanostructures. MRS Adv 2:1037–1045. https://doi.org/10.1557/adv.2017.69

    Article  CAS  Google Scholar 

  34. Nooney RI, Thirunavukkarasu D, Chen Y et al (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14:4721–4728. https://doi.org/10.1021/cm0204371

    Article  CAS  Google Scholar 

  35. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:S25–S30. https://doi.org/10.2144/000112517

    Article  Google Scholar 

  36. Gregg SJ, Sing KSW, Salzberg HW (1967) Adsorption surface area and porosity. J Electrochem Soc 114:279C. https://doi.org/10.1149/1.2426447

    Article  Google Scholar 

  37. Liu K, Ostadhassan M (2019) The impact of pore size distribution data presentation format on pore structure interpretation of shales. Adv Geo-Energy Res; 3:187–197. https://doi.org/10.26804/ager.2019.02.08

  38. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  39. Du X, He J (2011) Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications. Nanoscale 3:3984. https://doi.org/10.1039/c1nr10660k

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Ren D, Xu J, Chen N et al (2021) Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process. Colloids Surf A Physicochem Eng Asp 611:125773. https://doi.org/10.1016/J.COLSURFA.2020.125773

    Article  CAS  Google Scholar 

  41. Feng J, Liu Y, Liu C et al (2020) The impact of ethanol and chlorobenzene in the structure regulation of dendritic mesoporous silica nanoparticles. Microporous Mesoporous Mater 307:110504. https://doi.org/10.1016/J.MICROMESO.2020.110504

    Article  CAS  Google Scholar 

  42. Li Y, Bi L, Wang S et al (2010) Preparation of helical mesoporous ethylene–silica nanofibers with lamellar mesopores on the surfaces. Chem Commun 46:2680. https://doi.org/10.1039/b926593g

    Article  CAS  Google Scholar 

  43. Li J, Du X, Zheng N et al (2016) Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloids Surf B Biointerfaces 141:374–381. https://doi.org/10.1016/j.colsurfb.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  44. Faul CFJ, Antonietti M (2003) Ionic self-assembly: facile synthesis of supramolecular materials. Adv Mater 15:673–683. https://doi.org/10.1002/adma.200300379

    Article  CAS  Google Scholar 

  45. Faul CFJ (2014) Ionic self-assembly for functional hierarchical nanostructured materials. Acc Chem Res 47:3428–3438. https://doi.org/10.1021/ar500162a

    Article  CAS  PubMed  Google Scholar 

  46. Franke D, Vos M, Antonietti M et al (2006) Induced supramolecular chirality in nanostructured materials: ionic self-assembly of perylene-chiral surfactant complexes. Chem Mater 18:1839–1847. https://doi.org/10.1021/cm0525499

    Article  CAS  Google Scholar 

  47. Grzelak J, Gázquez J, Grayston A et al (2022) Magnetic mesoporous silica nanorods loaded with ceria and functionalized with fluorophores for multimodal imaging. ACS Appl Nano Mater 5:2113–2125. https://doi.org/10.1021/acsanm.1c03837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu Y, Li B, Xiao L et al (2013) The sphere-to-rod transition of squaraine-embedded micelles: a self-assembly platform displays a distinct response to cysteine and homocysteine. Chem Commun 49:7732. https://doi.org/10.1039/c3cc43223h

    Article  CAS  Google Scholar 

  49. Qiu H, Wang S, Zhang W et al (2008) Steric and temperature control of enantiopurity of chiral mesoporous silica. J Phys Chem C 112:1871–1877. https://doi.org/10.1021/jp709798q

    Article  CAS  Google Scholar 

  50. Rahmani S, Durand JO, Charnay C et al (2017) Synthesis of mesoporous silica nanoparticles and nanorods: application to doxorubicin delivery. Solid State Sci 68:25–31. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2017.04.003

    Article  ADS  CAS  Google Scholar 

  51. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  52. Reber MJ, Brühwiler D (2015) Bimodal mesoporous silica with bottleneck pores. Dalton Trans 44:17960–17967. https://doi.org/10.1039/C5DT03082J

    Article  CAS  PubMed  Google Scholar 

  53. Lai W, Yang S, Jiang Y et al (2020) Artefact peaks of pore size distributions caused by unclosed sorption isotherm and tensile strength effect. Adsorption 26:633–644. https://doi.org/10.1007/s10450-020-00228-1

    Article  CAS  Google Scholar 

  54. Chen X, Wang S, Zhuang J et al (2004) Mesoporous silica-supported NiB amorphous alloy catalysts for selective hydrogenation of 2-ethylanthraquinone. J Catal 227:419–427. https://doi.org/10.1016/j.jcat.2004.08.002

    Article  CAS  Google Scholar 

  55. Ruggiero L, Bartoli F, Fidanza MR et al (2020) Encapsulation of environmentally-friendly biocides in silica nanosystems for multifunctional coatings. Appl Surf Sci 514:145908. https://doi.org/10.1016/j.apsusc.2020.145908

    Article  CAS  Google Scholar 

  56. Dendramis AL, Schwinn EW, Sperline RP (1983) A surface-enhanced Raman scattering study of CTAB adsorption on copper. Surf Sci 134:675–688. https://doi.org/10.1016/0039-6028(83)90065-1

    Article  ADS  CAS  Google Scholar 

  57. da Costa AMA, Geraldes CFGC, Teixeira-Dias JJC (1982) Micellar aggregation of CTAB in water and chloroform solutions—a study by laser raman spectroscopy. J Colloid Interface Sci 86:254–259. https://doi.org/10.1016/0021-9797(82)90063-7

    Article  ADS  Google Scholar 

  58. Yeung H, Chan H, Weaver MJ (1999) A Vibrational Structural Analysis of Benzotriazole Adsorption and Phase Film Formation on Copper Using Surface-Enhanced Raman Spectroscopy. https://doi.org/10.1021/la981724f

  59. Billes F, Endrédi H, Keresztury G (2000) Vibrational spectroscopy of triazoles and tetrazole. J Mol Struct (Thoechem) 530:183–200. https://doi.org/10.1016/S0166-1280(00)00340-7

    Article  CAS  Google Scholar 

  60. Klapötke TM, Mayer P, Stierstorfer J, Weigand JJ (2008) Bistetrazolylamines—synthesis and characterization. J Mater Chem 18:5248. https://doi.org/10.1039/b811273h

    Article  CAS  Google Scholar 

  61. de Ferri L, Lorenzi A, Lottici PP (2016) OctTES/TEOS system for hybrid coatings: real-time monitoring of the hydrolysis and condensation by Raman spectroscopy. J Raman Spectrosc 47:699–705. https://doi.org/10.1002/jrs.4881

    Article  ADS  CAS  Google Scholar 

  62. Ek S, Root A, Peussa M, Niinistö L (2001) Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim Acta 379:201–212. https://doi.org/10.1016/S0040-6031(01)00618-9

    Article  CAS  Google Scholar 

  63. Pereira da Silva B, Saji VS, Aoki IV (2022) Rapid and eco-friendly one-step synthesis of dodecylamine-encapsulated mesoporous silica nanocontainers. Microporous Mesoporous Mater 341:112109. https://doi.org/10.1016/J.MICROMESO.2022.112109

    Article  CAS  Google Scholar 

  64. Voinescu AE, Kellermeier M, Carnerup AM et al (2007) Co-precipitation of silica and alkaline-earth carbonates using TEOS as silica source. J Cryst Growth 306:152–158. https://doi.org/10.1016/J.JCRYSGRO.2007.03.060

    Article  ADS  CAS  Google Scholar 

  65. Bari AH, Jundale RB, Kulkarni AA (2020) Understanding the role of solvent properties on reaction kinetics for synthesis of silica nanoparticles. Chem Eng J 398:125427. https://doi.org/10.1016/J.CEJ.2020.125427

    Article  CAS  Google Scholar 

  66. Bernards TNM, van Bommel MJ, Boonstra AH (1991) Hydrolysis-condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents. J Non Cryst Solids 134:1–13. https://doi.org/10.1016/0022-3093(91)90005-Q

    Article  ADS  CAS  Google Scholar 

  67. Andreeva NP, Kazanskii LP, Selyaninov IA et al (2009) Adsorption of 5-phenyltetrazole on iron and its inhibition of the dissolution of low-carbon steel in a neutral solution. Prot Met Phys Chem Surf 45:806–811. https://doi.org/10.1134/S2070205109070107

    Article  CAS  Google Scholar 

  68. Hong S, Shen S, Cheng D et al (2016) Drug Delivery High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods. Drug Deliv 23:316–327. https://doi.org/10.3109/10717544.2014.913323

    Article  CAS  PubMed  Google Scholar 

  69. Seljak KB, Kocbek P, Gašperlin M (2020) Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. J Drug Deliv Sci Technol 59:101906. https://doi.org/10.1016/J.JDDST.2020.101906

    Article  CAS  Google Scholar 

  70. Lehto VP, Riikonen J (2014) Drug loading and characterization of porous silicon materials. Porous Silicon Biomed Appl. https://doi.org/10.1533/9780857097156.3.337

    Article  Google Scholar 

  71. Xu JB, Cao YQ, Fang L, Hu JM (2018) A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings. Corros Sci 140:349–362. https://doi.org/10.1016/J.CORSCI.2018.05.030

    Article  CAS  Google Scholar 

  72. Yang B, Zhou S, Zeng J, et al Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. https://doi.org/10.1007/s12274-020-2736-6

Download references

Acknowledgements

The authors are grateful to Dr. Cadia D’Ottavi of the Department of Chemical Sciences and Technologies, Tor Vergata University and to Dr. Sergio Lo Mastro of the Department of Science, Roma Tre university, for the technical support. The availability of the Interdepartmental Electron Microscopy facility (LIME) at Roma Tre University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AP: Conceptualisation, methodology, formal analysis, investigation, data curation, visualisation, roles/writing—original draft, writing—review and editing. ST: formal analysis, data curation and resources. UPL: formal analysis and data curation. LR: methodology. LD: formal analysis and data curation. EDB: resources. ART: formal analysis and data curation. MAR: project administration, supervision and writing—review and editing. AS: project administration, supervision and writing—review and editing.

Corresponding author

Correspondence to Antonella Privitera.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

Not applicable. This article does not contain experiments involving human tissue or any ethical issues.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privitera, A., Tuti, S., Pasqual Laverdura, U. et al. One-stage synthesis and characterisation of supramolecular silica systems incorporating corrosion inhibitors for gradual release applications. J Mater Sci 59, 2497–2521 (2024). https://doi.org/10.1007/s10853-023-09306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09306-5

Navigation