Skip to main content
Log in

Biobased multiphase foams with ZnO for wound dressing applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The continuous development of new wound dressing materials is necessary in order to achieve the best skin tissue regeneration properties. In this research, renewable foams, based on thermoplastic polyurethane (TPU) blended with polylactic acid (PLA), with and without 5 wt.% zinc oxide (ZnO) nanofiller were fabricated, and their biocompatibility with fibroblast cells was evaluated. The composites were prepared by thermally induced phase separation method (TIPS) for wound dressing application. These porous materials were structurally and thermally characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Fourier transform spectroscopy (FTIR). The materials were also tested for their water uptake ability, hydrophilic/hydrophobic properties and water vapor transmission rate (WVTR). The fibroblasts presented a good interaction with these foams by adhering to the materials surface, pointing out that a higher content of TPU is favorable for cell viability. Moreover, no toxic effects of these novel materials were detected. The antibacterial tests showed proper antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, blending TPU foams with PLA could be validated as biocompatible platforms, suitable for wound dressing application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sonar SP, Kumar NAN, Ali N, Moharana A, Deepak TS (2021) A Comprehensive review on wound dressing usage in clinical settings. Int J Surg Med 8:16–26

    Google Scholar 

  2. Raju NR, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR (2022) Multifunctional and smart wound dressings- a review on recent research advancements in skin regenerative medicine. Pharmaceutics 14:1574

    Article  Google Scholar 

  3. Laurano R, Boffito M, Ciardelli G, Chiono V (2022) Wound dressing products: A translational investigation from the bench to the market. Eng Regen 3:182–200

    Google Scholar 

  4. Ghomi ER, Khalili S, Khorasani SN, Neisiany RE, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136:47738

    Article  Google Scholar 

  5. Eriksson E, Liu PY, Schultz GS, Martins-Green MM, Tanaka R, Weir D, Gould LJ, Armstrong DG, Gibbons GW, Wolcott R, Olutoye O, Kirsner RS, Gurtner GC (2022) Chronic wounds: treatment consensus. Wound Rep Reg 30:156–171

    Article  Google Scholar 

  6. Morales-González M, Díaz LE, Dominguez-Paz C, Valero MF (2022) Insights into the design of polyurethane dressings suitable for the stages of skin wound-healing: a systematic review. Polymers (Basel) 14:2990

    Article  Google Scholar 

  7. Almasian A, Najafi F, Eftekhari M, Ardekani MRS, Sharifzadeh M, Khanavi M (2020) Polyurethane/carboxymethylcellulose nanofibers containing malva sylvestris extract for healing diabetic wounds: preparation, characterization, in vitro and in vivo studies. Mater Sci Eng C 114:111039

    Article  CAS  Google Scholar 

  8. Lei Q, Li Z, Xu R, Wang Y, Li H, Wang Y, Liu M, Yang S, Zhan R, Zhao J et al (2016) Biomimetic thermoplastic polyurethane porous membrane with hierarchical structure accelerates wound healing by enhancing granulation tissue formation and angiogenesis. RSC Adv 6:99595–99603

    Article  CAS  Google Scholar 

  9. Wang Y, Li P, Xiang P, Lu J, Yuan J, Shen J (2016) Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J Mater Chem B 4:635–648

    Article  CAS  Google Scholar 

  10. Kasi G, Gnanasekar S, Zhang K, Kang ET, Xu LQ (2022) Polyurethane-based composites with promising antibacterial properties. J Appl Polym Sci 139:52181

    Article  CAS  Google Scholar 

  11. Pahlevanneshan Z, Deypour M, Kefayat A, Rafienia M, Sajkiewicz P, Neisiany RE, Enayati MS (2021) Polyurethane-nanolignin composite foam coated with propolis as a platform for wound dressing: synthesis and characterization. Polymers 13:3191

    Article  CAS  Google Scholar 

  12. Khodabakhshi D, Eskandarinia A, Kefayat A, Rafienia M, Navid S, Karbasi S, Moshtaghian J (2019) In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy. Colloids Surf B Biointerfaces 178:177–184

    Article  CAS  Google Scholar 

  13. Bužarovska A, Dinescu S, Lazar AD, Serban M, Pircalabioru GG, Costache M, Gualandi C, Avérous L (2019) Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Mater Sci Eng C 104:109893

    Article  Google Scholar 

  14. Namviriyachote N, Muangman P, Chinaroonchai K, Chuntrasakul C, Ritthidej GC (2020) Polyurethane-biomacromolecule combined foam dressing containing asiaticoside: fabrication, characterization and clinical efficacy for traumatic dermal wound treatment. Int J Biol Macromol 143:510–520

    Article  CAS  Google Scholar 

  15. Wojcik M, Kazimierczak P, Benko A, Palka K, Vivcharenko V, Przekora A (2021) Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. Mater Sci Eng C 124:112068

    Article  CAS  Google Scholar 

  16. Khan AR, Huang K, Jinzhong Z, Zhu T, Morsi Y, Aldalbahi A, El-Newehy M, Yan X, Mo X (2021) Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. J Mater Chem B 9:1452–1465

    Article  CAS  Google Scholar 

  17. Sun L, Han J, Liu Z, Wei S, Su X, Zhang G (2019) The facile fabrication of wound compatible anti-microbial nanoparticles encapsulated Collagenous Chitosan matrices for effective inhibition of poly-microbial infections and wound repairing in burn injury care: exhaustive in vivo evaluations. J Photochem Photobiol B Biol 197:111539

    Article  CAS  Google Scholar 

  18. Majhi RK, Mohanty S, Khan MI, Mishra A, Brauner A (2021) Ag@ZnO nanoparticles induce antimicrobial peptides and promote migration and antibacterial activity of keratinocytes. ACS Infect Dis 13:2068–2072

    Article  Google Scholar 

  19. Hassan A, Elebeedy D, Matar ER, Elsayed FM, Abd El Maksoud AI (2021) Investigation of angiogenesis and wound healing potential mechanisms of zinc oxide nanorods. Front Pharmacol 12:661217

    Article  CAS  Google Scholar 

  20. Toncheva A, Spasova M, Paneva D, Manolova N, Rashkov I (2014) Polylactide (PLA)-based electrospun fibrous materials containing ionic drugs as wound dressing materials: a review. Int J Polym Mater Polym Biomater 63:657–671

    Article  CAS  Google Scholar 

  21. Ilomuanya MO, Okafor PS, Amajuoyi JN et al (2020) Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing. J Basic Appl Sci 9:31

    Google Scholar 

  22. Fang Y, Zhu X, Wang N, Zhang X, Yang D, Nie J, Ma G (2019) Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing. Eur Polym J 116:30–37

    Article  CAS  Google Scholar 

  23. Yang X, Li L, Yang D, Nie J, Ma G (2020) Electrospun core-shell fibrous 2D scaffold with biocompatible poly(Glycerol Sebacate) and poly-L-lactic acid for wound healing. Adv Fiber Mater 2:105–117

    Article  CAS  Google Scholar 

  24. Rodríguez-TobíasH MG, Ledezma A, Romero J, Grande D (2014) Novel antibacterial electrospun mats based on poly(D, L-lactide)nanofibers and zinc oxide nanoparticles. J Mater Sci 49:8373–8385

    Article  Google Scholar 

  25. Malafatti JOD, Bernardo MP, Moreireira FKV, Ciol H, Inada NM, Mattoso LHC, Paris EC (2020) Electrospun poly(lactic acid) nanofibers loaded with silversulfadiazine/[Mg–Al]-layered double hydroxide as an antimicrobial wound dressing. Polym Adv Technol 31:377–1387

    Article  Google Scholar 

  26. Cui Y, Liu Y, Jing X, Zhang P, Chen X (2009) The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta Biomater 5:2680–2692

    Article  CAS  Google Scholar 

  27. Fisher EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical. Coll Polym Sci 251:980–990

    Google Scholar 

  28. ASTM standard E96, Standard test methods for water vapour transmission of materials. ASTM International. (2000). http://www.astm.org/

  29. Rahmatabadi D, Ghasemi I, Baniassadi M, Abrinia K, Baghani M (2022) 3D printing of PLA-TPU with different component ratios: Fracture toughness, mechanical properties, and morphology. J Mater Res Technol 21:3970–3981

    Article  CAS  Google Scholar 

  30. Bužarovska A, Gualandi C, Parrilli A, Scandola M (2015) Effect of TiO2 nanoparticle loading on Poly(l-lactic acid) porous scaffolds fabricated by TIPS. Compos B Eng 81:189–195

    Article  Google Scholar 

  31. Lan B, Li P, Yang Q, Gong P (2020) Dynamic self generation of hydrogen bonding and relaxation of polymer chain segment in stabilizing thermoplastic polyurethane microcellular foams. Mater Today Commun 24:101056

    Article  CAS  Google Scholar 

  32. Ji X, Gao F, Geng Z, Li D (2021) Fabrication of thermoplastic polyurethane/polylactide shape-memory blends with tunable optical and mechanical properties via a bilayer structure design. Polym Test 97:107135

    Article  CAS  Google Scholar 

  33. Nofar M, Mohammadi M, Carreau PJ (2020) Effect of TPU hard segment on the rheological and mechanical properties of TPU/PLA blends. J Appl Poly Sci 137:49387

    Article  CAS  Google Scholar 

  34. Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkes GL (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47:4105–4114

    Article  CAS  Google Scholar 

  35. Velayutham TS, Abd Majid WH, Gan WC, Khorsand Zak A, Gan SN (2012) Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J Appl Phys 112:054106

    Article  Google Scholar 

  36. Zhang CL, Hu J, Chen SJ (2010) Theoretical study of hydrogen bonding interactions on MDI-based polyurethane. J Mol Model 16:1391–1399

    Article  CAS  Google Scholar 

  37. Seymour R, Estes G, Cooper SL (1970) Infrared studies of segmented polyurethane elastomers I Hydrogen bonding. Macromolecules 3:579–583

    Article  Google Scholar 

  38. Molki B, Aframehr WM, Bagheri R, Salimi J (2018) Mixed matrix membranes of polyurethane with nickel oxide nanoparticles for CO2 gas separation. J Membrane Sci 549:588–601

    Article  CAS  Google Scholar 

  39. Blomergen S, Holden D, Hamer G, Bluhm T, Marchessault R (1986) Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2865–2871

    Article  Google Scholar 

  40. Panda SR, De S (2015) Preparation, characterization and antifouling properties of polyacrylonitrile/polyurethane blend membranes for water purification. RSC Adv 5:23599–23612

    Article  CAS  Google Scholar 

  41. Marycz K, Maredziak M, Grzesiak J, Szarek D, Lis A, Laska J (2016) Polyurethane/polylactide-blend films doped with zinc ions for the growth and expansion of human olfactory ensheathing cells (OECs) and adipose-derived mesenchymal stromal stem cells (ASCs) for regenerative medicine applications. Polymers 8(5):175

    Article  Google Scholar 

  42. Lundin JG, McGann CL, Daniels GC, Streifel BC, Wynne JH (2017) Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. Mater Sci Eng C 79:702–709

    Article  CAS  Google Scholar 

  43. Cardona LR, Sanzgiri YD, Benedetti LM, Stella VJ, Topp EM (1996) Application of benzyl hyaluronate membranes as potential wound dressing: evaluation of water vapor and gas permeabilities. Biomaterials 17:1639–1643

    Article  Google Scholar 

  44. Zhang Y, Nayak TR, Cai HH, W, (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645

    Article  CAS  Google Scholar 

  45. Abdul Samat A, Abdul Hamid ZA, Jaafar M, Ong CC, Yahaya BH (2023) Investigation of the in vitro and in vivo biocompatibility of a three-dimensional printed thermoplastic polyurethane/polylactic acid blend for the development of tracheal scaffolds. Bioengineering 10:394

    Article  CAS  Google Scholar 

  46. Lis-Bartos A, Smieszek A, Frańczyk K, Marycz K (2018) Fabrication, characterization, and cytotoxicity of thermoplastic polyurethane/poly (lactic acid) material using human adipose derived mesenchymal stromal stem cells (hASCs). Polymers 10:1073

    Article  Google Scholar 

  47. Leu Alexa R, Cucuruz A, Ghițulică C, Voicu G, Stamat LR, Dinescu S, Vlasceanu M, Iovu H, Serafim A, Ianchis R, Ciocan LT, Costache M (2022) 3D printed composite scaffolds of GelMA and hydroxyapatite nanopowders doped with Mg/Zn ions to evaluate the expression of genes and proteins of osteogenic markers. Nanomaterials 12:3420

    Article  CAS  Google Scholar 

  48. Agarwal H, Menon S, Kumar SV, Rajeshkumar S (2018) Mechanistic study of the antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biol Inter 286:60–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleksandra Bužarovska or Sorina Dinescu.

Ethics declarations

Conflicts of interest

The authors have no conflicts to declare.

Additional information

Handling Editor:  Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bužarovska, A., Selaru, A., Serban, M. et al. Biobased multiphase foams with ZnO for wound dressing applications. J Mater Sci 58, 17594–17609 (2023). https://doi.org/10.1007/s10853-023-09119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09119-6

Navigation