Skip to main content

Advertisement

Log in

N- and O-codoped porous carbon nanosheets derived from a linear Schiff-base polymer for Li-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional porous carbon nanosheets with large surface areas and high heteroatom contents are very appealing for applications in electrochemical energy storage. Herein, we offer a boulevard to prepare nitrogen- and oxygen-codoped carbon nanosheets (NOCNs) with high N, and O contents from a linear Schiff-base polymer (L-SBP), which was synthesized based on a convenient condensation reaction. Subsequently, NOCNs-T was achieved by pyrolysis of L-SBP at different temperatures (T). The derived NOCNs-800 offered a high specific surface area (SSA) of 478.7 m2 g−1 with a pore volume of 0.507 cm3 g−1. When employed as electrode materials for Li-ion batteries (LIBs), the Li-ion storage performance of NOCNs-T was notably improved after the pyrolysis of L-SBP under Ar atmosphere. Compared with NOCNs-700, and NOCNs-900, the as-prepared NOCNs-800 demonstrated a high reversible capacity with outstanding rate performance and cyclic durability. The discharge-specific capacity was maintained at about 380.4 mAh g−1 at 100 mA g−1 after 200 cycles. The excellent energy storage performance can be ascribed to the large SSA, high heteroatom contents, and suitable pores, offering abundant active sites and wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data can be obtained from authors.

References

  1. Muralee Gopi CVV, Vinodh R, Sambasivam S, Obaidat IM, Kim H-J (2020) Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. J Energy Storage 27:101035

    Article  Google Scholar 

  2. Liu W-J, Jiang H, Yu H-Q (2019) Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ Sci 12:1751–1779

    Article  CAS  Google Scholar 

  3. Acharya J, Pant B, Ojha GP, Park M (2022) Unlocking the potential of a novel hierarchical hybrid (Ni–Co)Se2@NiMoO4@rGO–NF core–shell electrode for high-performance hybrid supercapacitors. J Mater Chem A 10:7999–8014

    Article  CAS  Google Scholar 

  4. Xi Y, Huang S, Yang D, Qiu X, Su H, Yi C, Li Q (2020) Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries. Green Chem 22:4321–4330

    Article  CAS  Google Scholar 

  5. Yin J, Zhang W, Alhebshi NA, Salah N, Alshareef HN (2020) Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4:1900853

    Article  CAS  Google Scholar 

  6. Yuan Y, Chen Z, Yu H, Zhang X, Liu T, Xia M, Zheng R, Shui M, Shu J (2020) Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater 32:65–90

    Article  Google Scholar 

  7. Khan TA, Saud AS, Jamari SS, Rahim MHA, Park J-W, Kim H-J (2019) Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: a review. Biomass Bioenerg 130:105384

    Article  CAS  Google Scholar 

  8. Wang H, Shao Y, Mei S, Lu Y, Zhang M, Sun J-k, Matyjaszewski K, Antonietti M, Yuan J (2020) Polymer-derived heteroatom-doped porous carbon materials. Chem Rev 120:9363–9419

    Article  CAS  Google Scholar 

  9. Lu Y, Liang J, Deng S, He Q, Deng S, Hu Y, Wang D (2019) Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 65:103993

    Article  CAS  Google Scholar 

  10. Wei J-S, Ding H, Wang Y-G, Xiong H-M (2015) Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks. ACS Appl Mater Interfaces 7:5811–5819

    Article  CAS  Google Scholar 

  11. Li F, Huang X, Wang N, Zhu X, Chan V, Zhao R, Chao Y (2020) Aminal/Schiff-base polymer to fabricate nitrogen-doped porous carbon nanospheres for high-performance supercapacitors. ChemElectroChem 7:3859–3865

    Article  CAS  Google Scholar 

  12. Zhu D, Jiang J, Sun D, Qian X, Wang Y, Li L, Wang Z, Chai X, Gan L, Liu M (2018) A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors. J Mater Chem A 6:12334–12343

    Article  CAS  Google Scholar 

  13. Hu M, Chen Y, Jia H, Li Z, Yu J, Tian M, Liu Y, Cai X, Cai Y (2021) A facile synthetic strategy for highly microporous Schiff-base polymer as sulfur hosts for lithium-sulfur batteries. Ionics 27:4259–4267

    Article  CAS  Google Scholar 

  14. Kong L, Su L, Hao S, Yang W, Shao G, Qin X (2020) Graphene-like nitrogen-doped porous carbon nanosheets as both cathode and anode for high energy density lithium-ion capacitor. Electrochim Acta 349:136303

    Article  CAS  Google Scholar 

  15. Zhang X, Zhu G, Wang M, Li J, Lu T, Pan L (2017) Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 116:686–694

    Article  CAS  Google Scholar 

  16. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261

    Article  CAS  Google Scholar 

  17. Yu P, Zhang Z, Zheng L, Teng F, Hu L, Fang X (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6:1601111

    Article  Google Scholar 

  18. Zou B-X, Wang Y, Huang X, Lu Y (2018) Hierarchical N- and O-doped porous carbon composites for high-performance supercapacitors. J Nanomater 2018:8945042

    Article  Google Scholar 

  19. Wu D, Yang Y, Liu J, Zheng Y (2020) Plasma-modified N/O-doped porous carbon for CO2 capture: an experimental and theoretical study. Energ Fuel 34:6077–6084

    Article  CAS  Google Scholar 

  20. Lin L, Xie H, Lei Y, Li R, Liu X, Ou J (2020) Nitrogen source-mediated cocoon silk-derived N, O-doped porous carbons for high performance symmetric supercapacitor. J Mater Sci-Mater El 31:10825–10835

    Article  CAS  Google Scholar 

  21. Wei W, Liu W, Chen Z, Xiao R, Zhang Y, Du C, Wan L, Xie M, Chen J, Tian Z (2020) Template-assisted construction of N, O-doped mesoporous carbon nanosheet from hydroxyquinoline-Zn complex for high-performance aqueous symmetric supercapacitor. Appl Surf Sci 509:144921

    Article  CAS  Google Scholar 

  22. Liu Y, Huang G, Li Y, Yao Y, Liu Q, Xing B, Jia J, Zhang C (2021) Structural evolution of porous graphitic carbon nanosheets based on quinonyl decomposition for supercapacitor electrodes. Appl Surf Sci 537:147824

    Article  CAS  Google Scholar 

  23. Huo K, An W, Fu J, Gao B, Wang L, Peng X, Cheng GJ, Chu PK (2016) Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. J Power Sources 324:233–238

    Article  CAS  Google Scholar 

  24. Jiang Q, Zhang Z, Yin S, Guo Z, Wang S, Feng C (2016) Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl Surf Sci 379:73–82

    Article  CAS  Google Scholar 

  25. Liu T, Luo R, Qiao W, Yoon S-H, Mochida I (2010) Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries. Electrochim Acta 55:1696–1700

    Article  CAS  Google Scholar 

  26. Wang L, Schnepp Z, Titirici MM (2013) Rice husk-derived carbon anodes for lithium ion batteries. J Mater Chem A 1:5269–5273

    Article  CAS  Google Scholar 

  27. Zheng P, Liu T, Zhang J, Zhang L, Liu Y, Huang J, Guo S (2015) Sweet potato-derived carbon nanoparticles as anode for lithium ion battery. RSC Adv 5:40737–40741

    Article  CAS  Google Scholar 

  28. Jafari SM, Khosravi M, Mollazadeh M (2016) Nanoporous hard carbon microspheres as anode active material of lithium ion battery. Electrochim Acta 203:9–20

    Article  CAS  Google Scholar 

  29. Peng Y-T, Lo C-T (2015) Electrospun porous carbon nanofibers as lithium ion battery anodes. J Solid State Electr 19:3401–3410

    Article  CAS  Google Scholar 

  30. Li C, Yin X, Chen L, Li Q, Wang T (2009) Porous carbon nanofibers derived from conducting polymer: Synthesis and application in lithium-ion batteries with high-rate capability. J Phys Chem C 113:13438–13442

    Article  CAS  Google Scholar 

  31. Sankar S, Saravanan S, Ahmed ATA, Inamdar AI, Im H, Lee S, Kim DY (2019) Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery. Mater Lett 240:189–192

    Article  CAS  Google Scholar 

  32. Wang S-X, Yang L, Stubbs LP, Li X, He C (2013) Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5:12275–12282

    Article  CAS  Google Scholar 

  33. Yu X, Zhang K, Tian N, Qin A, Liao L, Du R, Wei C (2015) Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries. Mater Lett 142:193–196

    Article  CAS  Google Scholar 

  34. Wu Z, Wang L, Huang J, Zou J, Chen S, Cheng H, Jiang C, Gao P, Niu X (2019) Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim Acta 306:446–453

    Article  CAS  Google Scholar 

  35. Etacheri V, Wang C, O’Connell MJ, Chan CK, Pol VG (2015) Porous carbon sphere anodes for enhanced lithium-ion storage. J Mater Chem A 3:9861–9868

    Article  CAS  Google Scholar 

  36. Shilpa Kumar R, Sharma A (2018) Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery. J Appl Electrochem 48:1–13

    Article  CAS  Google Scholar 

  37. Li Y, Li C, Qi H, Yu K, Liang C (2018) Mesoporous activated carbon from corn stalk core for lithium ion batteries. Chem Phys 506:10–16

    Article  CAS  Google Scholar 

  38. Wang L, Schütz C, Salazar-Alvarez G, Titirici M-M (2014) Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv 4:17549–17554

    Article  CAS  Google Scholar 

  39. Liu J, Gong N, Peng W, Li Y, Zhang F, Fan X (2022) Vertically aligned 1 T phase MoS2 nanosheet array for high-performance rechargeable aqueous Zn-ion batteries. Chem Eng J 428:130981

    Article  CAS  Google Scholar 

  40. He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L (2017) Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater 7:1601920

    Article  Google Scholar 

  41. Li Z, Wei W, Wang Y, Gu A, Wang L, Zhou Q (2019) Trimanganese tetraoxide nanoframeworks: Morphology–controlled synthesis and application in asymmetric supercapacitors. J Alloys Compd 793:446–453

    Article  CAS  Google Scholar 

  42. Guo W, Yang T, Huang L, Hou W, Wang S (2022) A feasible strategy of coating CoMoO4 on Co11(HPO3)8(OH)6 nanorods for improved practical application in supercapacitors. Sustain Energ Fuels 6:209–216

    Article  CAS  Google Scholar 

  43. Li Z, Yu J, Hu M, Cai X, Chen Y, Cai Y, Wei W (2021) Construction of Zn–Co–Ni–Se nanosheet arrays on nickel foam for hybrid supercapacitors. Ceram Int 47:29730–29738

    Article  CAS  Google Scholar 

  44. Li X, Wang S, Wang T, Duan Z, Huang Z, Liang G, Fan J, Yang C, Rogach AL, Zhi C (2022) Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries. Nano Energy 98:107278

    Article  CAS  Google Scholar 

  45. Chen H, Song T, Tang L, Pu X, Li Z, Xu Q, Liu H, Wang Y, Xia Y (2020) In-situ growth of vertically aligned MoS2 nanowalls on reduced graphene oxide enables a large capacity and highly stable anode for sodium ion storage. J Power Sources 445:227271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the support from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA460002), the Natural Science Foundation of Jiangsu University of Technology (KYY18041, and KYH23075), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_1454, and XSJCX22_70), the Undergraduate Innovation and Entrepreneurship Training Program, and Changzhou Science and Technology Bureau (CM20223017).

Author information

Authors and Affiliations

Authors

Contributions

JY and CS done experiment and investigation. HS done software and editing. MH helped in experiment and data analysis. YC done experiment. ZL contributed to conceptualization, methodology, experiment, writing—review and editing, funding acquisition, and supervision.

Corresponding author

Correspondence to Zhongchun Li.

Ethics declarations

Conflict of interest

The authors declare that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

There are no ethical issues involved in this work.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 634 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Shi, C., Su, H. et al. N- and O-codoped porous carbon nanosheets derived from a linear Schiff-base polymer for Li-ion batteries. J Mater Sci 58, 12258–12270 (2023). https://doi.org/10.1007/s10853-023-08785-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08785-w

Navigation