Skip to main content
Log in

Synthesis and structural characterizations of CrCoFeNiMnx (0 ≤ x ≤ 1) high-entropy-alloy thin films by thermal reduction in hydrogen

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 20 July 2023

This article has been updated

Abstract

CrCoFeNiMn is a well-known high-entropy alloy (HEA) that has been extensively investigated in both bulk and millimeter-thick layer structures using various methods. In this study, we present the thermal hydrogen reduction synthesis and structural characterization of submicron thick CrCoFeNiMnx (0 ≤ x ≤ 1) HEA thin films. Crystallographic analysis revealed the coexistence of Cr2O3 and γ-phase HEA at x = 0. As the value of x was increased to 0.25, both Cr2O3 and (CryMn1-y)3O4 were synthesized alongside the γ-phase HEA in the thin films. When x was further increased to ≥ 0.5, the Cr2O3 crystallites disappeared, and the thin films consisted of (CryMn1-y)3O4 and γ-phase HEA. We observed the presence of mudcracks and particle domains (PDs), with their area densities increasing with higher Mn compositions. Energy-dispersive X-ray spectroscopy confirmed the presence of Co-, Fe-, and Ni-rich elements in the PDs, while the flat domains (FDs) surrounding the PDs exhibited higher concentrations of Cr, Mn, and O. Chemical etching in HCl solution (10%) revealed that the γ-phase HEA exhibited a tendency to dissolve, and its dissolution rate was faster than that of the oxide. The structural and phase evolutions observed and provide valuable insights into the thermal reduction synthesis of HEA thin films, offering potential for advanced functional applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Data available on requirements.

Change history

References

  1. Gong N, Meng TL, Cao J, Wang Y, Karyappa R, Ivan Tan CK, Suwardi A, Zhu Q, Ngo ACY, Misra KP, Misra RDK, Liu H (2023) Laser-cladding of high entropy alloy coatings: an overview. Mater Technol 38(1):2151696

    Article  Google Scholar 

  2. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng, A 375–377:213–218

    Article  Google Scholar 

  3. Yeh J-W, Chen S-K, Lin S-J, Gan J-Y, Chin T-S, Shun T-T, Tsau C-H, Chang S-Y (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303

    Article  CAS  Google Scholar 

  4. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2016) High-entropy alloy: challenges and prospects. Mater Today 19(6):349–362

    Article  CAS  Google Scholar 

  5. Seol JB, Bae JW, Kim JG, Sung H, Li Z, Lee HH, Shim SH, Jang JH, Ko W-S, Hong SI, Kim HS (2020) Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Mater 194:366–377

    Article  CAS  Google Scholar 

  6. Moschetti M, Burr PA, Obbard E, Kruzic JJ, Hosemann P, Gludovatz B (2022) Design considerations for high entropy alloys in advanced nuclear applications. J Nucl Mater 567:153814

    Article  CAS  Google Scholar 

  7. Wang Y, Gong N, Liu H, Ma W, Hippalgaonkar K, Liu Z, Huang Y (2023) Ordering-dependent hydrogen evolution and oxygen reduction electrocatalysis of high-entropy intermetallic Pt4FeCoCuNi. Adv Mater. https://doi.org/10.1002/adma.202302067

    Article  Google Scholar 

  8. Zhang W, Liaw PK, Zhang Y (2018) Science and technology in high-entropy alloys. Sci China Mater 61(1):2–22

    Article  CAS  Google Scholar 

  9. Li S-Y, Nguyen TX, Su Y-H, Lin C-C, Huang Y-J, Shen Y-H, Liu C-P, Ruan J-J, Chang K-S, Ting J-M (2022) Sputter-deposited high entropy alloy thin film electrocatalyst for enhanced oxygen evolution reaction performance. Small 18(39):2106127

    Article  CAS  Google Scholar 

  10. Jung S-G, Han Y, Kim JH, Hidayati R, Rhyee J-S, Lee JM, Kang WN, Choi WS, Jeon H-R, Suk J, Park T (2022) High critical current density and high-tolerance superconductivity in high-entropy alloy thin films. Nat Commun 13(1):3373

    Article  CAS  Google Scholar 

  11. Ling Y, Chen J, He A, Wang G, Yu X, Xu M, Han Z, Du J, Xu Q (2022) Epitaxial growth of high-entropy alloy thin film with spontaneous exchange bias. J Appl Phys 131(23):233904

    Article  CAS  Google Scholar 

  12. Pavithra CLP, Janardhana RKSK, Reddy KM, Murapaka C, Joardar J, Sarada BV, Tamboli RR, Hu Y, Zhang Y, Wang X, Dey SR (2021) An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films. Sci Rep 11(1):8836

    Article  CAS  Google Scholar 

  13. Alvi S, Jarzabek DM, Kohan MG, Hedman D, Jenczyk P, Natile MM, Vomiero A, Akhtar F (2020) Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering. ACS Appl Mater Interfaces 12(18):21070–21079

    Article  CAS  Google Scholar 

  14. Mayandi J, Schrade M, Vajeeston P, Stange M, Lind AM, Sunding MF, Deuermeier J, Fortunato E, Løvvik OM, Ulyashin AG, Diplas S, Carvalho PA, Finstad TG (2022) High entropy alloy CrFeNiCoCu sputter deposited films: structure, electrical properties, and oxidation. J Vac Sci Technol, A 40(2):023402

    Article  CAS  Google Scholar 

  15. Chuang-Shi Feng T-WL, Wang T-L, Lin M-Z, Hou J, Wenjun L, Liao W-B (2021) A novel high-entropy amorphous thin film with high electrical resistivity and outstanding corrosion resistance. Acta Metallurgica Sinica (English Letters) 34(11):1537–1545

    Article  Google Scholar 

  16. Lu T-W, Feng C-S, Wang Z, Liao K-W, Liu Z-Y, Xie Y-Z, Hu J-G, Liao W-B (2019) Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Appl Surface Sci 494:72–79

    Article  CAS  Google Scholar 

  17. Cropper MD (2018) Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition. Appl Surf Sci 455:153–159

    Article  CAS  Google Scholar 

  18. Ustinov AI, Demchenkov SA, Melnychenko TV, Skorodzievskii VS, Polishchuk SS (2021) Effect of structure of high entropy CrFeCoNiCu alloys produced by EB PVD on their strength and dissipative properties. J Alloy Compd 887:161408

    Article  CAS  Google Scholar 

  19. Liu HF, Wong SL, Chi DZ (2015) CVD growth of MoS2-based two-dimensional materials. Chem Vap Deposition 21(10-11–12):241–259

    Article  CAS  Google Scholar 

  20. Liu H, Ansah Antwi KK, Ying J, Chua S, Chi D (2014) Towards large area and continuous MoS2 atomic layers via vapor-phase growth: thermal vapor sulfurization. Nanotechnology 25(40):405702

    Article  Google Scholar 

  21. Liu H (2016) Recent progress in atomic layer deposition of multifunctional oxides and two-dimensional transition metal dichalcogenides. J Mol Eng Mater 04(04):1640010

    Article  CAS  Google Scholar 

  22. Liu H, Yang RB, Yang W, Jin Y, Lee CJJ (2018) Atomic layer deposition and post-growth thermal annealing of ultrathin MoO3 layers on silicon substrates: formation of surface nanostructures. Appl Surf Sci 439:583–588

    Article  CAS  Google Scholar 

  23. Yang W, Kawai H, Bosman M, Tang B, Chai J, Tay WL, Yang J, Seng HL, Zhu H, Gong H, Liu H, Goh KEJ, Wang S, Chi D (2018) Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale 10(48):22927–22936

    Article  CAS  Google Scholar 

  24. Liu HF, Hu GX, Gong H, Zang KY, Chua SJ (2008) Effects of oxygen on low-temperature growth and band alignment of ZnO/GaN heterostructures. J Vac Sci Technol, A 26(6):1462–1468

    Article  CAS  Google Scholar 

  25. Liu H, Chi D (2012) Magnetron-sputter deposition of Fe3S4 thin films and their conversion into pyrite (FeS2) by thermal sulfurization for photovoltaic applications. J Vac Sci Technol, A 30(4):04D102

    Article  Google Scholar 

  26. Li H, Zhang Y, Liu H, Wang J (2011) Large ZnO mesocrystals of hexagonal columnar morphology derived from liquid crystal templates. J Am Ceram Soc 94(10):3267–3275

    Article  CAS  Google Scholar 

  27. Liu HF, Lim ES, Tung PKH, Xiang N (2011) Fabrication and transfer of nanoporous alumina thin films for templating applications: metal dots array deposition and porous ZnO film growth. Thin Solid Films 519(10):3050–3054

    Article  CAS  Google Scholar 

  28. Liu HF, Wang YD, Lin M, Ong LT, Tee SY, Chi DZ (2015) Cobalt sulfide nanoparticles decorated on TiO2 nanotubes via thermal vapor sulfurization of conformal TiO2-coated Co(CO3)0.5(OH)·0.11H2O core–shell nanowires for energy storage applications. RSC Adv 5(60):48647–48653

    Article  CAS  Google Scholar 

  29. Yao Y, Huang Z, Xie P, Lacey SD, Jacob RJ, Xie H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah MR, Wang C, Shahbazian-Yassar R, Li J, Hu L (2018) Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359(6383):1489–1494

    Article  CAS  Google Scholar 

  30. Zhang D, Zhao H, Wu X, Deng Y, Wang Z, Han Y, Li H, Shi Y, Chen X, Li S, Lai J, Huang B, Wang L (2021) Multi-Site Electrocatalysts Boost pH-Universal Nitrogen Reduction by High-Entropy Alloys. Adv Func Mater 31(9):2006939

    Article  CAS  Google Scholar 

  31. Li K, Chen W (2021) Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects. Materials Today Energy 20:100638

    Article  CAS  Google Scholar 

  32. Liu H, Wei Y, Tan CKI, Ardi DT, Tan DCC, Lee CJJ (2020) XRD and EBSD studies of severe shot peening induced martensite transformation and grain refinements in austenitic stainless steel. Mater Charact 168:110574

    Article  CAS  Google Scholar 

  33. Maji D, Das S (2014) Analysis of plasma-induced morphological changes in sputtered thin films over compliant elastomer. J Phys D Appl Phys 47(10):105401

    Article  Google Scholar 

  34. Seghir R, Arscott S (2015) Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces. Sci Rep 5(1):14787

    Article  CAS  Google Scholar 

  35. Linke R, Schreiner M, Demortier G (2004) The application of photon, electron and proton induced X-ray analysis for the identification and characterisation of medieval silver coins. Nucl Instrum Methods Phys Res, Sect B 226(1):172–178

    Article  CAS  Google Scholar 

  36. Roodbar Shojaei T, Soltani S, Derakhshani M (2022) Chapter 6 - Synthesis, properties, and biomedical applications of inorganic bionanomaterials. In: Barhoum A, Jeevanandam J, Danquah MK (eds) Fundamentals of Bionanomaterials. Elsevier, Amsterdam, pp 139–174

    Chapter  Google Scholar 

  37. Liu HF, Antwi KKA, Wang YD, Ong LT, Chua SJ, Chi DZ (2014) Atomic layer deposition of crystalline Bi2O3 thin films and their conversion into Bi2S3 by thermal vapor sulfurization. RSC Adv 4(102):58724–58731

    Article  CAS  Google Scholar 

  38. Liu HF, Huang A, Chi DZ (2010) Thermal annealing of nanocrystalline Fe3S4 films deposited on Si substrates by dc-magnetron sputtering at room temperature. J Phys D Appl Phys 43(45):455405

    Article  Google Scholar 

  39. Liu H, Iskander A, Yakovlev NL, Chi D (2015) Anomalous SiO2 layer formed on crystalline MoS2 films grown on Si by thermal vapor sulfurization of molybdenum at elevated temperatures. Mater Lett 160:491–495

    Article  CAS  Google Scholar 

  40. Poirier DR, Ganesan S, Andrews M, Ocansey P (1991) Isothermal coarsening of dendritic equiaxial grains in Al 15.6wt.% Cu alloy. Mater Sci Eng A 148(2):289–297

    Article  Google Scholar 

  41. Terzi S, Salvo L, Suery M, Dahle AK, Boller E (2010) Coarsening mechanisms in a dendritic Al–10% Cu alloy. Acta Mater 58(1):20–30

    Article  CAS  Google Scholar 

  42. Luidold S, Antrekowitsch H (2007) Hydrogen as a reducing agent: State-of-the-art science and technology. JOM 59(6):20–26

    Article  CAS  Google Scholar 

  43. Rigg T (1964) Kinetics of the reduction of ferrous chloride with hydrogen. Can J Chem Eng 42(6):247–253

    Article  CAS  Google Scholar 

  44. Shibayama R, Tsuchida N, Tanaka T (1980) Studies on the pyrohydrolysis of metal chlorides I. The pyrohydrolysis of NiCl2, CoCl2, and FeCl2. Denki Kagaku oyobi Kogyo Butsuri Kagaku 48(10):545–553

    Article  CAS  Google Scholar 

  45. El-Geassy AA, Nasr MI, Omar AA, Mousa EA (2008) Isothermal reduction behaviour of MnO2 doped Fe2O3 compacts with H2 at 1073–1373 K. Ironmak Steelmak 35(7):531–538

    Article  CAS  Google Scholar 

  46. Liu F, Liu J, Li Y, Fang R (2021) Theoretical study of reduction mechanism of Fe2O3 by H2 during chemical looping combustion. Chin J Chem Eng 37:175–183

    Article  Google Scholar 

  47. Haver FP, Wong MM (1971) Recovery of copper, iron, and sulfur from chalcopyrite concentrate using a ferric chloride leach. JOM 23(2):25–29

    Article  CAS  Google Scholar 

  48. Chen K, Bothwell A, Guthrey H, Hartenstein MB, Polzin J-I, Feldmann F, Nemeth W, Theingi S, Page M, Young DL, Stradins P, Agarwal S (2022) Measurement of poly-Si film thickness on textured surfaces by X-ray diffraction in poly-Si/SiOx passivating contacts for monocrystalline Si solar cells. Sol Energy Mater Sol Cells 236:111510

    Article  CAS  Google Scholar 

  49. Eisenstein A (1946) An X-Ray Method for Measuring the Thickness of Thin Crystalline Films. J Appl Phys 17(11):874–878

    Article  CAS  Google Scholar 

  50. Chaudhuri J, Shah S (1991) Thickness measurement of thin films by x-ray absorption. J Appl Phys 69(1):499–501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by A*STAR RIE2020 advanced manufacturing and engineering (AME) programmatic grant through the structural metal alloys program (SMAP, Grant no. A18B1b0061, Project no. SC25/18-8R1715-PRJ6).

Author information

Authors and Affiliations

Authors

Contributions

NG, RK, TLM, YW, SLT, JC, ML, XH, CKIT, and AS were contributed to experimental investigation, formal analysis, writing—original draft, writing—review and editing. Hongfei Liu was contributed to funding acquisition, resources, conceptualization, methodology, investigation, formal analysis, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Hongfei Liu.

Ethics declarations

Conflict of interest

The authors are here declaring no conflict of interest in this work for publication.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, N., Karyappa, R., Meng, T.L. et al. Synthesis and structural characterizations of CrCoFeNiMnx (0 ≤ x ≤ 1) high-entropy-alloy thin films by thermal reduction in hydrogen. J Mater Sci 58, 12058–12069 (2023). https://doi.org/10.1007/s10853-023-08731-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08731-w

Navigation