Skip to main content

Advertisement

Log in

Photocatalytic nitrogen fixation over flower-like molecular cobalt phthalocyanine@ZnIn2S4 heterojunctions under visible-light irradiation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molecular catalysts (such as metal phthalocyanine (Pc) molecules) have been widely utilized in homogeneous catalytic systems. However, its practical application is still hindered by the weak stability and difficulty to recycle molecular catalysts from the homogeneous solution. An attractive strategy was adopted by combining the molecular Pc catalysts with an inorganic semiconductor, which can solve the recycling issue and improve the photo-induced charge separation simultaneously. Herein, we integrated a molecular Pc catalyst and a spiky-like ZnIn2S4 to conduct the photocatalytic nitrogen reduction reaction (PNRR). The spiky-like composites of ZnIn2S4@Pc demonstrated superior PNRR activity without any sacrificial hole capture (156.59 µmol g−1 h−1), which is contributed by the enhanced light harvesting and charge separation induced by the dimension-matched combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Medford AJ, Wellendorff J, Vojvodic A, Studt F, Abild-Pedersen F, Jacobsen KW, Bligaard T, Nørskov JK (2014) Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345:197–200. https://doi.org/10.1126/science.1253486

    Article  CAS  Google Scholar 

  2. Shi R, Zhao Y, Waterhouse GI, Zhang S, Zhang T (2019) Defect engineering in photocatalytic nitrogen fixation. ACS Catal 9:9739–9750. https://doi.org/10.1021/acscatal.9b03246

    Article  CAS  Google Scholar 

  3. Zhao ZF, Ren HJ, Shi YH, Tan JD, Xin X, Yang D, Jiang ZY (2022) Active site engineering in heterovalent metal organic frameworks for photocatalytic ammonia synthesis. Chem Eng J 443:136559. https://doi.org/10.1016/j.cej.2022.136559

    Article  CAS  Google Scholar 

  4. Zhao YX, Miao YX, Zhou C, Zhang TR (2022) Artificial photocatalytic nitrogen fixation: where are we now? Where is its future? Mol Catal 518:112107. https://doi.org/10.1016/j.mcat.2021.112107

    Article  CAS  Google Scholar 

  5. Zhang GH, Yuan XX, Xie B, Meng Y, Ni ZM, Xia SJ (2022) S vacancies act as a bridge to promote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis. Chem Eng J 433:133670. https://doi.org/10.1016/j.cej.2021.133670

    Article  CAS  Google Scholar 

  6. Yin HB, Chen Z, Peng Y, Xiong SC, Li YD, Yamashita H, Li JH (2022) Dual active centers bridged by oxygen vacancies of ruthenium single-atom hybrids supported on molybdenum oxide for photocatalytic ammonia synthesis. Angew Chem Int Ed 134:e202114242. https://doi.org/10.1002/anie.202114242

    Article  CAS  Google Scholar 

  7. Wei YX, Jiang WJ, Liu Y, Bai XJ, Hao D, Ni BJ (2022) Recent advances in photocatalytic nitrogen fixation and beyond. Nanoscale 14:2990–2997. https://doi.org/10.1039/d2nr00198e

    Article  CAS  Google Scholar 

  8. Zhang GH, Meng Y, Xie B, Ni ZM, Lu HF, Xia SJ (2021) Precise location and regulation of active sites for highly efficient photocatalytic synthesis of ammonia by facet-dependent BiVO4 single crystals. Appl Catal B Environ 296:120379. https://doi.org/10.1016/j.apcatb.2021.120379

    Article  CAS  Google Scholar 

  9. Liu YH, Fernandez CA, Varanasi SA, Bui NN, Song LK, Hatzell MC (2022) Prospects for aerobic photocatalytic nitrogen fixation. Acs Energy Lett 7:24–29. https://doi.org/10.1021/acsenergylett.1c02260

    Article  CAS  Google Scholar 

  10. Ma B, Chen G, Fave C, Chen LJ, Kuriki R, Maeda K, Ishitani O, Lau TC, Bonin J, Robert M (2020) Efficient visible-light-driven co2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J Am Chem Soc 142:6188–6195. https://doi.org/10.1021/jacs.9b13930

    Article  CAS  Google Scholar 

  11. Lin L, Liu T, Xiao J, Li H, Wei P, Gao D, Nan B, Si R, Wang G, Bao X (2020) Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc–nitrogen–carbon tandem catalyst. Angew Chem Int Ed 59:22408–22413. https://doi.org/10.1002/anie.202009191

    Article  CAS  Google Scholar 

  12. Wang M, Torbensen K, Salvatore D, Ren S, Joulié D, Dumoulin F, Mendoza D, Lassalle-Kaiser B, Işci U, Berlinguette CP, Robert M (2019) CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat Commun 10:3602. https://doi.org/10.1038/s41467-019-11542-w

    Article  CAS  Google Scholar 

  13. Roy S, Reisner E (2019) Visible-light-driven CO2 reduction by mesoporous carbon nitride modified with polymeric cobalt phthalocyanine. Angew Chem Int Ed 58:12180–12184. https://doi.org/10.1002/anie.201907082

    Article  CAS  Google Scholar 

  14. Alam KM, Kumar P, Chaulagain N, Zeng S, Goswami A, Garcia J, Vahidzadeh E, Bhaiyya ML, Bernard GM, Goel S (2022) Unusual electronic properties of cellulose nanocrystals conjugated to cobalt phthalocyanine: long-lived charge separation and visible-light-driven photocatalytic activity. J Phys Chem C 126:15635–15650. https://doi.org/10.1021/acs.jpcc.2c03531

    Article  CAS  Google Scholar 

  15. Alam KM, Kumar P, Gusarov S, Kobryn AE, Kalra AP, Zeng S, Goswami A, Thundat T, Shankar K (2020) Synthesis and characterization of zinc phthalocyanine-cellulose nanocrystal (CNC) conjugates: toward highly functional CNCs. ACS Appl Mater Interfaces 12:43992–44006. https://doi.org/10.1021/acsami.0c07179

    Article  CAS  Google Scholar 

  16. Kumar P, Gill K, Kumar S, Ganguly SK, Jain SL (2015) Magnetic Fe3O4@ MgAl–LDH composite grafted with cobalt phthalocyanine as an efficient heterogeneous catalyst for the oxidation of mercaptans. J Mol Catal A Chem 401:48–54. https://doi.org/10.1016/j.molcata.2015.03.001

    Article  CAS  Google Scholar 

  17. Kumar S, Kumar P, Jain SL (2014) Graphene oxide immobilized copper phthalocyanine tetrasulphonamide: the first heterogenized homogeneous catalyst for dimethylcarbonate synthesis from CO2 and methanol. J Mater Chem A 2:18861–18866. https://doi.org/10.1039/c4ta03420a

    Article  CAS  Google Scholar 

  18. Kumar P, Kumar A, Sreedhar B, Sain B, Ray SS, Jain SL (2014) Cobalt phthalocyanine immobilized on graphene oxide: an efficient visible-active catalyst for the photoreduction of carbon dioxide. Chem A Eur J 20:6154–6161. https://doi.org/10.1002/chem.201304189

    Article  CAS  Google Scholar 

  19. Bian J, Feng JN, Zhang ZQ, Li ZJ, Zhang YH, Liu YD, Ali S, Qu Y, Bai LL, Xie JJ, Tang DY, Li X, Bai FQ, Tang JW, Jing LQ (2019) Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer. Angew Chem Int Ed 58:10873–10878. https://doi.org/10.1002/anie.201905274

    Article  CAS  Google Scholar 

  20. Mu Z, Chen S, Wang Y, Zhang Z, Li Z, Xin B, Jing L (2021) Controlled construction of copper phthalocyanine/α-Fe2O3 ultrathin S-scheme heterojunctions for efficient photocatalytic CO2 reduction under wide visible-light irradiation. Small Sci 1:2100050. https://doi.org/10.1002/smsc.202100050

    Article  CAS  Google Scholar 

  21. Chen K, Cao M, Lin Y, Fu J, Liao H, Zhou Y, Li H, Qiu X, Hu J, Zheng X, Shakouri M, Xiao Q, Hu Y, Li J, Liu J, Cortés E, Liu M (2022) Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv Funct Mater 32:2111322. https://doi.org/10.1002/adfm.202111322

    Article  CAS  Google Scholar 

  22. Zhang G, Wu H, Chen D, Li N, Xu Q, Li H, He J, Lu J (2022) A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ 7:176–204. https://doi.org/10.1016/j.gee.2020.12.015

    Article  CAS  Google Scholar 

  23. He YQ, Rao H, Song KP, Li JX, Yu Y, Lou Y, Li CG, Han Y, Shi Z, Feng SH (2019) 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv Funct Mater 29:1905153. https://doi.org/10.1002/adfm.201905153

    Article  CAS  Google Scholar 

  24. Tang ML, Ao YH, Wang PF, Wang C (2020) All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation. J Hazard Mater 387:121713. https://doi.org/10.1016/j.jhazmat.2019.121713

    Article  CAS  Google Scholar 

  25. Zhang GP, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM (2020) Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angew Chem Int Ed 59:8255–8261. https://doi.org/10.1002/anie.202000503

    Article  CAS  Google Scholar 

  26. She P, Liu Z, Sun H, Shang Y, Li Z, Qin Z, Xu KL, Yu ZX (2019) Bio-inspired spinach-leaf-based Au/ZnO nanocomposites as photocatalyst. J Bionic Eng 16:1080–1091. https://doi.org/10.1007/s42235-019-0120-6

    Article  Google Scholar 

  27. Li M, Wei Y, Ma B, Hu Y, Li DD, Cui XQ (2022) Synthesis and antibacterial properties of ZIF-8/Ag-modified titanium alloy. J Bion Eng 19:507–515. https://doi.org/10.1007/s42235-021-00135-3

    Article  Google Scholar 

  28. Wang S, Guan BY, Wang X, Lou XWD (2018) Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J Am Chem Soc 140:15145–15148. https://doi.org/10.1021/jacs.8b07721

    Article  CAS  Google Scholar 

  29. Watt GW, Chrisp JD (1952) Spectrophotometric method for determination of hydrazine. Anal Chem 24:2006–2008. https://doi.org/10.1021/ac60072a044

    Article  CAS  Google Scholar 

  30. She P, Qin JS, Sheng JY, Qi YY, Rui HB, Zhang W, Ge X, Lu GY, Song XW, Rao H (2022) Dual-functional photocatalysis for cooperative hydrogen evolution and benzylamine oxidation coupling over sandwiched-like Pd@TiO2@ZnIn2S4 nanobox. Small 18:2105114. https://doi.org/10.1002/smll.202105114

    Article  CAS  Google Scholar 

  31. She P, Qi Y, Bao T, Rui H, Guan B, Rao H, Qin J-S (2022) Bioinspired self-supporting phthalocyanine@ZnIn2S4 foam for photocatalytic CO2 reduction under visible light irradiation. Adv Energy Sustain Res 3:2100200. https://doi.org/10.1002/aesr.202100200

    Article  CAS  Google Scholar 

  32. Sorokin A, Mangematin S, Pergrale C (2002) Selective oxidation of aromatic compounds with dioxygen and peroxides catalyzed by phthalocyanine supported catalysts. J Mol Catal A Chem 182:267–281

    Article  Google Scholar 

  33. Kumar P, Kumar A, Joshi C, Singh R, Saran S, Jain SL (2015) Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO2) for photoreduction of CO2 in visible light. RSC Adv 5:42414–42421

    Article  CAS  Google Scholar 

  34. Zuo GC, Wang YT, Teo WL, Xie AM, Guo Y, Dai YX, Zhou WQ, Jana D, Xian QM, Dong W, Zhao YL (2020) Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew Chem Int Ed 59:11287–11292. https://doi.org/10.1002/anie.202002136

    Article  CAS  Google Scholar 

  35. Zhang L, Xie F, Liu J, Sun Z, Zhang X, Wang Y, Wang Y, Li R, Fan C (2022) Light-switchable oxygen vacancies enhanced nitrogen fixation performance on BiOBr: mechanism of formation, Reconversion and Function. Chem Eng J 450:138066. https://doi.org/10.1016/j.cej.2022.138066

    Article  CAS  Google Scholar 

  36. Wang X, Wang B, Yin S, Xu M, Yang L, Sun H (2022) Highly efficient photocatalytic nitrogen fixation on bio-inspired triphase interface with improved diffusion of nitrogen. J Clean Prod 360:132162. https://doi.org/10.1016/j.jclepro.2022.132162

    Article  CAS  Google Scholar 

  37. Ali H, Masar M, Guler AC, Urbanek M, Machovsky M, Kuritka I (2021) Heterojunction-based photocatalytic nitrogen fixation: principles and current progress. Nanoscale Adv 3:6358–6372. https://doi.org/10.1039/D1NA00565K

    Article  CAS  Google Scholar 

  38. Su T, Men C, Chen L, Chu B, Luo X, Ji H, Chen J, Qin Z (2022) Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv Sci 9:2103715. https://doi.org/10.1002/advs.202103715

    Article  CAS  Google Scholar 

  39. Wang X, Wang X, Huang J, Li S, Meng A, Li Z (2021) Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat Commun 12:4112. https://doi.org/10.1038/s41467-021-24511-z

    Article  CAS  Google Scholar 

  40. Huang L, Han B, Huang X, Liang S, Deng Z, Chen W, Peng M, Deng H (2019) Ultrathin 2D/2D ZnIn2S4/MoS2 hybrids for boosted photocatalytic hydrogen evolution under visible light. J Alloy Compd 798:553–559. https://doi.org/10.1016/j.jallcom.2019.05.162

    Article  CAS  Google Scholar 

  41. Zhang J, Zhao B, Liang W, Zhou G, Liang Z, Wang Y, Qu J, Sun Y, Jiang L (2020) Three-phase electrolysis by gold nanoparticle on hydrophobic interface for enhanced electrochemical nitrogen reduction reaction. Adv Sci 7:2002630. https://doi.org/10.1002/advs.202002630

    Article  CAS  Google Scholar 

  42. Wang X-j, Zhao Y, Li F-t, Dou L-j, Li Y-p, Zhao J, Hao Y-j (2016) A Chelation strategy for in-situ constructing surface oxygen vacancy on 001 facets exposed BiOBr nanosheets. Sci Rep-Uk 6:24918. https://doi.org/10.1038/srep24918

    Article  CAS  Google Scholar 

  43. Du C, Yan B, Lin Z, Yang G (2020) Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn2S4 for photocatalytic hydrogen production. J Mater Chem A 8:207–217. https://doi.org/10.1039/C9TA11318E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was made possible as a result of a generous grant from Jilin youth growth science and technology plan project (20220508019RC), “Interdisciplinary integration and innovation” project of Jilin University in 2021 (JLUXKJC2021QZ06), the National Natural Science Foundation of China (Grant Nos. 21901084, 21905106, and 21871104) and the 111 Project (B17020), Jilin Provincial Science & Technology Department (20220101060GC, 20220101057GC, 20200401126GX, 20200301013RQ and 20190303039SF), Key Science and Technology R&D Projects of Jilin Province (2020C023–3), Program of Jilin University Science and Technology Innovative Research Team (2020TD-03), and XYZ Foundation (Grant Number 123567).

Author information

Authors and Affiliations

Authors

Contributions

The original idea was conceived by HR, HS, and PS; Experiments and data analysis were performed by PS and XW; characterization was performed by PS, XW, TB, HR, and YQ; the manuscript was drafted by PS and XW, TB, HR, YQ, and J-SQ.

Corresponding authors

Correspondence to Heng Rao or Hang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor:Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1160 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, P., Wang, X., Bao, T. et al. Photocatalytic nitrogen fixation over flower-like molecular cobalt phthalocyanine@ZnIn2S4 heterojunctions under visible-light irradiation. J Mater Sci 58, 8731–8741 (2023). https://doi.org/10.1007/s10853-023-08576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08576-3

Navigation