Skip to main content

Advertisement

Log in

Preparation and properties of porous Zn-based scaffolds as biodegradable implants: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, biodegradable porous Zn-based scaffolds employed as bone tissue engineering scaffolds to treat large bone defects have attracted attention of many researchers. Although porous Zn-based scaffolds have acceptable biocompatibility in vivo and more reasonable degradation rates than degradable Mg-based and Fe-based scaffolds, there is still a certain distance between the porous Zn-based scaffolds that have been developed and the ideal bone tissue engineering scaffolds. In this paper, the methods that had been used to prepare porous Zn-based scaffolds were summarized, and the advantages and disadvantages of each method were analysed. The mechanical properties of porous Zn-based scaffolds were reviewed, and the compressive, tensile, and fatigue behaviors of the scaffolds were also discussed. The degradation properties of porous Zn-based scaffolds in vitro were summarized, and the degradation rules were found. Comparing the degradation properties of bulk Zn-based materials and porous Zn-based scaffolds, the degradations of porous Zn-based scaffolds were more deeply understood. In addition, the degradation behaviors of porous Zn-based scaffolds in vivo were also reviewed. The antibacterial properties of porous Zn-based scaffolds were summarized. Reviewing the experimental results of the biocompatibility of porous Zn-based scaffolds in vitro and in vivo, the main factor affecting the biocompatibility was identified, and the reasons for the large gap between the biocompatibility results in vivo and in vitro were discussed. At last, the problems faced by the current porous Zn-based scaffolds used as bone tissue engineering scaffolds were proposed, and the potential solutions to these problems were also suggested.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced with permission from reference [5]. Copyright 2016, Elsevier

Figure 2

Reproduced with permission from reference [5]. Copyright 2016, Elsevier

Figure 3

Reproduced with permission from reference [15]. Copyright 2018, Elsevier

Figure 4

Reproduced with permission from reference [17]. Copyright 2020, Elsevier

Figure 5

Reproduced with permission from reference [36]. Copyright 2020, Elsevier

Figure 6

Reproduced with permission from reference [28]. Copyright 2020, Elsevier

Figure 7
Figure 8
Figure 9

Reproduced with permission from reference [23]. Copyright 2022, Elsevier

Figure 10
Figure 11

Reproduced with permission from reference [27]. Copyright 2022, Elsevier

Figure 12

Reproduced with permission from reference [60]. Copyright 2020, Elsevier

Figure 13

Reproduced with permission from reference [17]. Copyright 2020, Elsevier

Figure 14

Reproduced with permission from reference [17]. Copyright 2020, Elsevier

Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Reproduced with permission from reference [48]. Copyright 2018, Elsevier

Figure 20

Reproduced with permission from reference [4]. Copyright 2021, Elsevier

Figure 21

Reproduced from Xia et al. [25] under the CC BY-NC-ND 4.0 terms. Copyright 2023 Bioactive materials. Open access. b Porous Fe and Fe@Zn scaffolds. Reproduced with permission from reference [4]. Copyright 2021, Elsevier. c Porous Zn–Mg scaffolds. Reproduced with permission from reference [24]. Copyright 2022, Elsevier. d Porous Zn–Cu scaffolds. Reproduced with permission from reference [28]. Copyright 2020, Elsevier

Similar content being viewed by others

Data availability

All data pertaining to this work will be available on reasonable requests.

References

  1. Kiernan C, Knuth C, Farrell E (2018) Endochondral ossification: recapitulating bone development for bone defect repair. In: Stoddart MJ, Craft AM, Pattappa G, Gardner OFW (eds) Developmental biology and musculoskeletal tissue engineering principles and applications. Academic Press, Salt Lake City, pp 125–148

    Google Scholar 

  2. Zhang T, Wei QG, Zhou H, Jing ZH, Liu XG, Zheng YF, Cai H, Wei F et al (2021) Three-dimensional-printed individualized porous implants: a new “implant-bone” interface fusion concept for large bone defect treatment. Bioact Mater 6:3659–3670

    Article  CAS  Google Scholar 

  3. Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, Kruth J-P, Schrooten J (2012) The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater 8:2824–2834

    Article  Google Scholar 

  4. He J, Fang J, Wei P, Li YL, Guo H, Mei QS, Ren FZ (2021) Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomater 121:665–681

    Article  CAS  Google Scholar 

  5. Zhao LC, Zhang Z, Song YT, Liu SJ, Qi YM, WangX WQZ, Cui CX (2016) Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Mater Des 108:136–144

    Article  CAS  Google Scholar 

  6. Li HF, Xie XH, Zheng YF, Cong Y, Zhou FY, Qiu KJ, Wang X, Chen SH et al (2015) Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep 5:10719

    Article  CAS  Google Scholar 

  7. Bowen PK, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 25:2577–2582

    Article  CAS  Google Scholar 

  8. Zhang ZX, Gu BB, Zhang WJ, Kan GY, Sun JY (2012) The enhanced characteristics of osteoblast adhesion to porous Zinc–TiO2 coating prepared by plasma electrolytic oxidation. Appl Surf Sci 258:6504–6511

    Article  CAS  Google Scholar 

  9. Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10:453–457

    Article  CAS  Google Scholar 

  10. Vojtěch D, Kubásek J, Šerák J, Novák P (2011) Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater 7:3515–3522

    Article  Google Scholar 

  11. Li HF, Yang HT, Zheng YF, Zhou FY, Qiu KJ, Wang X (2015) Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater Des 83:95–102

    Article  CAS  Google Scholar 

  12. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    Article  CAS  Google Scholar 

  13. Zhao LC, Wang X, Wang TB, Xia YH, Cui CX (2019) Mechanical properties and biodegradation of porous Zn–1Al alloy scaffolds. Mater Lett 247:75–78

    Article  CAS  Google Scholar 

  14. Xie Y, Zhao LC, Zhang Z, Wang X, Wang R, Cui CX (2018) Fabrication and properties of porous Zn–Ag alloy scaffolds as biodegradable materials. Mater Chem Phys 219:433–443

    Article  CAS  Google Scholar 

  15. Hou Y, Jia GZ, Yue R, Chen CX, Pei J, Zhang H, Huang H, Xiong MP et al (2018) Synthesis of biodegradable Zn-based scaffolds using NaCl templates: relationship between porosity, compressive properties and degradation behavior. Mater Charact 137:162–169

    Article  CAS  Google Scholar 

  16. Ren HZ, Pan C, Liu YC, Liu DB, He XH, Li XH, Sun XH (2022) Fabrication, in vitro and in vivo properties of porous Zn–Cu alloy scaffolds for bone tissue engineering. Mater Chem Phys 289:126458

    Article  CAS  Google Scholar 

  17. Li Y, Pavanram P, Zhou J, Lietaert K, Taheri P, Li W, San H, Leeflang MA et al (2020) Additively manufactured biodegradable porous zinc. Acta Biomater 101:609–623

    Article  CAS  Google Scholar 

  18. Li Y, Pavanram P, Zhou J, Lietaert K, Bobbert FSL, Kubo Y, Leeflang MA, Jahr H (2020) Additively manufactured functionally graded biodegradable porous zinc. Biomater Sci 8:2404–2419

    Article  CAS  Google Scholar 

  19. Yang YW, Cheng Y, Peng SP, Xu L, He CX, Qi FW, Zhao MC, Shuai CJ (2021) Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioact Mater 6:1230–1241

    Article  CAS  Google Scholar 

  20. Lietaert K, Zadpoor AA, Sonnaert M, Schrooten J, Weber L, Mortensen A, Vleugels J (2020) Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications. Acta Biomater 110:289–302

    Article  CAS  Google Scholar 

  21. Wen P, Qin Y, Chen YZ, Voshage M, Jauer L, Poprawe R, Schleifenbaum J-H (2019) Laser additive manufacturing of Zn porous scaffolds: shielding gas flow, surface quality and densification. J Mater Sci Technol 35:368–376

    Article  CAS  Google Scholar 

  22. Qin Y, Wen P, Voshage M, Chen YZ, Schückler PG, Jauer L, Xia DD, Guo H et al (2019) Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: formation quality, microstructure and mechanical properties. Mater Des 181:107937

    Article  CAS  Google Scholar 

  23. Voshage M, Megahed S, Schückler PG, Wen P, Qin Y, Jauer L, Poprawe R, Schleifenbaum J-H (2022) Additive manufacturing of biodegradable Zn–xMg alloys: effect of Mg content on manufacturability, microstructure and mechanical properties. Mater Today Commun 32:103805

    Article  CAS  Google Scholar 

  24. Qin Y, Liu AB, Guo H, Shen YN, Wen P, Lin H, Xia DD, Voshage M et al (2022) Additive manufacturing of Zn–Mg alloy porous scaffolds with enhanced osseointegration: in vitro and in vivo studies. Acta Biomater 145:403–415

    Article  CAS  Google Scholar 

  25. Xia DD, Qin Y, Guo H, Wen P, Lin H, Voshage M, Schleifenbaum J-H, Cheng Y et al (2023) Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioact Mater 19:12–23

    Article  CAS  Google Scholar 

  26. Qin Y, Yang HT, Liu AB, Dai JB, Wen P, Zheng YF, Tian Y, Li S et al (2022) Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn–0.7Li biodegradable metals. Acta Biomater 142:388–401

    Article  CAS  Google Scholar 

  27. Yang Y, Cheng Y, Yang M, Qian G, Peng S, Qi F, Shuai C (2022) Semicoherent strengthens graphene/zinc scaffolds. Mater Today Nano 17:100163

    Article  CAS  Google Scholar 

  28. Tong X, Shi ZM, Xu LC, Lin J, Zhang DC, Wang K, Li YC, Wen CE (2020) Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomater 102:481–492

    Article  CAS  Google Scholar 

  29. Yao RH, Han SY, Sun YH, Zhao YY, Shan RF, Liu L, Yao XH, Hang RQ (2022) Fabrication and characterization of biodegradable Zn scaffold by vacuum heating-press sintering for bone repair. Biomater Adv 138:212968

    Article  CAS  Google Scholar 

  30. Čapek J, Jablonská E, Lipov J, Kubatík TF, Vojtěch D (2018) Preparation and characterization of porous zinc prepared by spark plasma sintering as a material for biodegradable scaffolds. Mater Chem Phys 203:249–258

    Article  Google Scholar 

  31. Čapek J, Pinc J, Msallamová Š, Jablonská E, Veřtát P, Kubásek J, Vojtěch D (2019) Thermal plasma spraying as a new approach for preparation of zinc biodegradable scaffolds: a complex material characterization. J Therm Spray Technol 28:826–841

    Article  Google Scholar 

  32. Yusop AH, Bakir AA, Shaharom NA, AbdulKadir MR, Hermawan H (2012) Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012:1–10

    Article  Google Scholar 

  33. Lietaert K, Deursen J-V, Lapauw T, Weber L, Mortensen A, Vleugels J (2019) Mechanical properties of replicated cellular Zn and Zn1.5Mg in uniaxial compression. Mater Charact 157:109895

    Article  CAS  Google Scholar 

  34. Wang XJ, Xu SQ, Zhou SW, Xu W, Leary M, Choong P, Qian M, Brandt M et al (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    Article  CAS  Google Scholar 

  35. Zadpoor AA (2017) Mechanics of additively manufactured biomaterials. J Mech Behav Biomed Mater 70:1–6

    Article  CAS  Google Scholar 

  36. Cockerill I, Su YC, Sinha S, Qin YX, Zheng YF, Young M-L, Zhu DH (2020) Porous zinc scaffolds for bone tissue engineering applications: a novel additive manufacturing and casting approach. Mater Sci Eng C 110:110738

    Article  CAS  Google Scholar 

  37. Nogueira ID, Maçoas EM, Montemor MF, Alves MM (2022) Biomedical potential of 3D Zn and ZnCu foams produced by dynamic hydrogen bubble template. Appl Surf Sci 580:152207

    Article  CAS  Google Scholar 

  38. Zhao LC, Song YT, Zhang Z, Wang X, Wang TB, Cui CX (2018) Fabrication and investigation on properties of degradable Zn–1Al alloy for biomedical applications. Mater Rep 32:1192–1196

    Google Scholar 

  39. Huang H, Liu H, Ren KX, Shi JH, Ju J, Wu HR, Jiang JH, Ma AB et al (2021) Improvement of ductility and work hardening ability in a high strength Zn–Mg–Y alloy via micron-sized and submicron-sized YZn12 particles. J Alloys Compd 877:160268

    Article  CAS  Google Scholar 

  40. Li L, Liu CF, Jiao HZ, Yang L, Cao FL, Wang XJ, Cui JZ (2021) Investigation on microstructures, mechanical properties and in vitro corrosion behavior of novel biodegradable Zn–2Cu–0.01Ti–xLi alloys. J Alloys Compd 888:161529

    Article  CAS  Google Scholar 

  41. Zhang L, Liu XY, Huang H, Zhan W (2019) Effects of Ti on microstructure, mechanical properties and biodegradation behavior of Zn–Cu alloy. Mater Lett 244:119–122

    Article  CAS  Google Scholar 

  42. Li Y, Jahr H, Lietaert K, Pavanram P, Yilmaz A, Fockaert L, Leeflang MA, Pouran B et al (2018) Additively manufactured biodegradable porous iron. Acta Biomater 77:380–393

    Article  CAS  Google Scholar 

  43. Li Y, Jahr H, Pavanram P, Bobbert FSL, Puggi U, Zhang XY, Pouran B, Leeflang MA et al (2019) Additively manufactured functionally graded biodegradable porous iron. Acta Biomater 96:646–661

    Article  CAS  Google Scholar 

  44. Wu F, Liu CS, O’Neill B, Wei J, Ngothai Y (2012) Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Appl Surf Sci 258:7589–7595

    Article  CAS  Google Scholar 

  45. Wu SL, Liu XM, Yeung KWK, Liu CS, Yang XJ (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36

    Article  Google Scholar 

  46. Kubásek J, Pospíšilová I, Vojtěch D, Jablonská E, Ruml T (2014) Structural, mechanical and cytotoxicity characterization on as-cast biodegradable Zn–xMg (x=0.8-8.3%) alloys. Mater Technol 48:623–629

    Google Scholar 

  47. Staigera MP, Pietaka AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734

    Article  Google Scholar 

  48. Zhao LC, Xie Y, Zhang Z, Wang X, Qi YM, Wang TB, Wang R, Cui CX (2018) Fabrication and properties of biodegradable ZnO nano-rods/porous Zn scaffold. Mater Charact 144:227–238

    Article  CAS  Google Scholar 

  49. Wu HZ, Xie XX, Wang J, Ke GZ, Huang H, Liao Y, Kong QQ (2021) Biological properties of Zn–0.04Mg–2Ag: a new degradable zinc alloy scaffold for repairing large-scale bone defects. J Mater Res Technol 13:1779–1789

    Article  CAS  Google Scholar 

  50. Zhao DL, Han CJ, Peng B, Cheng T, Fan JX, Yang L, Chen LL, Wei QS (2022) Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Acta Biomater 153:614–629

    Article  CAS  Google Scholar 

  51. Qiu S, Sun FD, You C, Tang CK, Zhou BL, Zhang SQ, Feng JT, Tian AX et al (2023) Preparation of porous Zn–Li alloy scaffolds for bone repair and its degradation behavior in vitro and in vivo. Mater Today Commun 35:105605

    Article  CAS  Google Scholar 

  52. Chen BX, Sun XH, Liu DB, Tian H, Gao JJ (2023) A novel method combining VAT photopolymerization and casting for the fabrication of biodegradable Zn–1Mg scaffolds with triply periodic minimal surface. J Mech Behav Biomed Mater 141:105763

    Article  CAS  Google Scholar 

  53. Yuan PK, Zhang MS, Wang X, Qi YM, Wang TB, Zhao LC, Cui CX (2023) Effects of polylactic acid coating on properties of porous Zn scaffolds as degradable materials. Mater Charact 199:112852

    Article  CAS  Google Scholar 

  54. Gu XN, Zhou WR, Zheng YF, Cheng Y, Wei SC, Zhong SP, Xi TF, Chen LJ (2010) Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—in simulated body fluid. Acta Biomater 6:4605–4613

    Article  CAS  Google Scholar 

  55. Li GN, Yang HT, Zheng YF, Chen XH, Yang JA, Zhu DH, Ruan LQ, Takashima K (2019) Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility. Acta Biomater 97:23–45

    Article  CAS  Google Scholar 

  56. Li HF, Huang Y, Ji XJ, Wen CE, Wang LN (2022) Fatigue and corrosion fatigue behaviors of biodegradable Zn–Li and Zn–Cu–Li under physiological conditions. J Mater Sci Technol 131:48–59

    Article  Google Scholar 

  57. Raihan MM, Otsuka Y, Tsuchida K, Manonukul A, Ohnuma K, Miyashita Y (2021) Damage evaluation of HAp-coated porous titanium foam in simulated body fluid based on compression fatigue behavior. J Mech Behav Biomed Mater 117:104383

    Article  CAS  Google Scholar 

  58. Li Y, Jahr H, Zhang XY, Leeflang MA, Li W, Pouran B, Tichelaar FD, Weinans H et al (2019) Biodegradation-affected fatigue behavior of additively manufactured porous magnesium. Addit Manuf 28:299–311

    CAS  Google Scholar 

  59. Teoh SH (2000) Fatigue of biomaterials: a review. Int J Fatigue 22:825–837

    Article  CAS  Google Scholar 

  60. Li Y, Li W, Bobbert FSL, Lietaert K, Dong JH, Leeflang MA, Zhou J, Zadpoor AA (2020) Corrosion fatigue behavior of additively manufactured biodegradable porous zinc. Acta Biomater 106:439–449

    Article  CAS  Google Scholar 

  61. Zhuang HY, Han Y, Feng AL (2008) Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater Sci Eng C 28:1462–1466

    Article  CAS  Google Scholar 

  62. Seyedraoufi ZS, Mirdamadi S (2014) Effects of pulse electrodeposition parameters and alkali treatment on the properties of nano hydroxyapatite coating on porous Mg–Zn scaffold for bone tissue engineering application. Mater Chem Phys 148:519–527

    Article  CAS  Google Scholar 

  63. Gu XN, Zhou WR, Zheng YF, Liu Y, Li YX (2010) Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater Lett 64:1871–1874

    Article  CAS  Google Scholar 

  64. Bonithon R, Lupton C, Roldo M, Dunlop J-N, Blunn G-W, Witte F, Tozzi G (2023) Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: a mechanistic study. Bioact Mater 19:406–417

    Article  CAS  Google Scholar 

  65. Zhang YX, Lin T, Meng HY, Wang XT, Peng H, Liu GB, Wei S, Lu Q et al (2022) 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo. J Orthop Transl 33:13–23

    Google Scholar 

  66. Liu JG, Liu BC, Min SY, Yin BZ, Peng B, Yu ZS, Wang CM, Ma XL et al (2022) Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: process optimization, in vitro and in vivo investigation. Bioact Mater 16:301–319

    Article  CAS  Google Scholar 

  67. Garimella A, Rathi D, Jangid R, Ghosh S-B, Bandyopadhyay-Ghosh S (2022) Investigation of bio-degradation behaviour of porous magnesium alloy based bone scaffolds. Mater Today Proc 50:2276–2279

    Article  CAS  Google Scholar 

  68. Xie K, Wang NQ, Guo Y, Zhao S, Tan J, Wang L, Li GY, Wu JX et al (2022) Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: an in vitro and in vivo study. Bioact Mater 8:140–152

    Article  CAS  Google Scholar 

  69. Putra NE, Borg KGN, Diaz-Payno PJ, Leeflang MA, Klimopoulou M, Taheri P, Mol JMC, Fratila-Apachitei LE et al (2022) Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration. Acta Biomater 148:355–373

    Article  CAS  Google Scholar 

  70. Chen Q, Zhao XY, Lai WJ, Li Z, You DQ, Yu ZT, Li W, Wang XJ (2022) Surface functionalization of 3D printed Ti scaffold with Zn-containing mesoporous bioactive glass. Surf Coat Technol 435:128236

    Article  CAS  Google Scholar 

  71. Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8:925–936

    Article  CAS  Google Scholar 

  72. Liu LJ, Meng Y, Dong CF, Yan Y, Volinsky AA, Wang LN (2018) Initial formation of corrosion products on pure zinc in simulated body fluid. J Mater Sci Technol 34:2271–2282

    Article  CAS  Google Scholar 

  73. Sikora-Jasinska M, Mostaed E, Mostaed A, Beanland R, Mantovani D, Vedani M (2017) Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn–Ag alloys for degradable implant applications. Mater Sci Eng C 77:1170–1181

    Article  CAS  Google Scholar 

  74. Tang ZB, Niu JL, Huang H, Zhang H, Pei J, Ou JM, Yuan GY (2017) Potential biodegradable Zn–Cu binary alloys developed for cardiovascular implant applications. J Mech Behav Biomed Mater 72:182–191

    Article  CAS  Google Scholar 

  75. Shi ZZ, Yu J, Liu XF, Wang LN (2018) Fabrication and characterization of novel biodegradable Zn–Mn–Cu alloys. J Mater Sci Technol 34:1008–1015

    Article  CAS  Google Scholar 

  76. Wang K, Tong X, Lin JX, Wei AP, Li YC, Dargusch M, Wen CE (2021) Binary Zn–Ti alloys for orthopedic applications: corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. J Mater Sci Technol 74:216–229

    Article  CAS  Google Scholar 

  77. Sun J, Zhang X, Shi ZZ, Gao XX, Li HY, Zhao FY, Wang JQ, Wang LN (2021) Development of a high-strength Zn–Mn–Mg alloy for ligament reconstruction fixation. Acta Biomater 119:485–498

    Article  CAS  Google Scholar 

  78. Jia B, Yang HT, Han Y, Zhang ZC, Qu XH, Zhuang YF, Wu Q, Zheng YF et al (2020) In vitro and in vivo studies of Zn–Mn biodegradable metals designed for orthopedic applications. Acta Biomater 108:358–372

    Article  CAS  Google Scholar 

  79. Tong X, Cai WH, Lin JX, Wang K, Jin LF, Shi ZM, Zhang DC, Lin JG et al (2021) Biodegradable Zn–3Mg–0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications. Acta Biomater 123:407–417

    Article  CAS  Google Scholar 

  80. Shi ZZ, Gao XX, Chen HT, Liu XF, Li A, Zhang HJ, Wang LN (2020) Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn–Fe alloy through second phase refinement. Mater Sci Eng C 116:111197

    Article  CAS  Google Scholar 

  81. Yang N, Balasubramani N, Venezuela J, Almathami S, Wen CE, Dargusch M (2021) The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn–Ca–Cu alloys for absorbable wound closure device applications. Bioact Mater 6:1436–1451

    Article  CAS  Google Scholar 

  82. Lin JX, Tong X, Sun QX, Luan YN, Zhang DC, Shi ZM, Wang K, Lin JG et al (2020) Biodegradable ternary Zn–3Ge–0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications. Acta Biomater 115:432–446

    Article  CAS  Google Scholar 

  83. Dambatta M-S, Izman S, Kurniawan D, Hermawan H (2017) Processing of Zn-3Mg alloy by equal channel angular pressing for biodegradable metal implants. J King Saud Univ Sci 29:455–461

    Article  Google Scholar 

  84. Tong X, Zhang DC, Lin JX, Dai YL, Luan YN, Sun QX, Shi ZM, Wang K et al (2020) Development of biodegradable Zn–1Mg-0.1RE (RE = Er, Dy, and Ho) alloys for biomedical applications. Acta Biomater 117:384–399

    Article  CAS  Google Scholar 

  85. Yang HT, Qu XH, Lin WJ, Chen DF, Zhu DH, Dai KR, Zheng YF (2019) Enhanced osseointegration of Zn–Mg composites by tuning the release of Zn ions with sacrificial Mg-rich anode design. ACS Biomater Sci Eng 5:453–467

    Article  CAS  Google Scholar 

  86. Su YC, Yang HT, Gao JL, Qin YX, Zheng YF, Zhu DH (2019) Interfacial zinc phosphate is the key to controlling biocompatibility of metallic zinc implants. Adv Sci 6:1900112

    Article  Google Scholar 

  87. Yang HT, Jia B, Zhang ZC, Qu XH, Li GN, Lin WJ, Zhu DH, Dai KR et al (2020) Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun 11:401

    Article  Google Scholar 

  88. Yang HT, Wang C, Liu CQ, Chen HW, Wu YF, Han JT, Jia ZC, Lin WJ et al (2017) Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 145:92–105

    Article  CAS  Google Scholar 

  89. Drelich AJ, Zhao S, Guillory RJ II, Drelich JW, Goldman J (2017) Long-term surveillance of zinc implant in murine artery: surprisingly steady biocorrosion rate. Acta Biomater 58:539–549

    Article  CAS  Google Scholar 

  90. Niu JL, Tang ZB, Huang H, Pei J, Zhang H, Yuan GY, Ding WJ (2016) Research on a Zn–Cu alloy as a biodegradable material for potential vascular stents application. Mater Sci Eng C 69:407–413

    Article  CAS  Google Scholar 

  91. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789

    Article  CAS  Google Scholar 

  92. Guo ZJ, Chen C, Gao Q, Li YB, Zhang L (2014) Fabrication of silver-incorporated TiO2 nanotubes and evaluation on its antibacterial activity. Mater Lett 137:464–467

    Article  CAS  Google Scholar 

  93. Su YC, Wang K, Gao JL, Yang Y, Qin YX, Zheng YF, Zhu DH (2019) Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomater 98:174–185

    Article  CAS  Google Scholar 

  94. Yuan W, Xia DD, Wu SL, Zheng YF, Guan ZP, Rau JV (2022) A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater 7:192–216

    Article  CAS  Google Scholar 

  95. Liu Y, Zheng YF, Chen XH, Yang JA, Pan HB, Chen DF, Wang LN, Zhang JL et al (2019) Fundamental theory of biodegradable metals-definition, criteria, and design. Adv Funct Mater 29:1805402

    Article  Google Scholar 

  96. Kubásek J, Vojtěch D, Jablonská E, Pospíšilová I, Lipov J, Ruml T (2016) Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater Sci Eng C 58:24–35

    Article  Google Scholar 

  97. Zhuang Y, Liu QC, Jia GZ, Li HL, Yuan GY, Yu HB (2021) A biomimetic zinc alloy scaffold coated with brushite for enhanced cranial bone regeneration. ACS Biomater Sci Eng 7:893–903

    Article  CAS  Google Scholar 

  98. Guo H, Xia DD, Zheng YF, Zhu Y, Liu YS, Zhou YS (2020) A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: in vitro and in vivo studies. Acta Biomater 106:396–409

    Article  CAS  Google Scholar 

  99. Wang JL, Witte F, Xi TF, Zheng YF, Yang K, Yang YS, Zhao DW, Meng J et al (2015) Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater 21:237–249

    Article  Google Scholar 

  100. Yang HT, Qu XH, Lin WJ, Wang C, Zhu DH, Dai KR, Zheng YF (2018) In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomater 71:200–214

    Article  CAS  Google Scholar 

  101. He J, Li DW, He FL, Liu YY, Liu YL, Zhang CY, Ren FZ, Ye YJ et al (2020) A study of degradation behaviour and biocompatibility of Zn–Fe alloy prepared by electrodeposition. Mater Sci Eng C 117:111295

    Article  CAS  Google Scholar 

  102. Yuan W, Xia DD, Zheng YF, Liu XM, Wu SL, Li B, Han Y, Jia ZJ et al (2020) Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn–Li alloy: in vitro and in vivo studies. Acta Biomater 105:290–303

    Article  CAS  Google Scholar 

  103. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  Google Scholar 

  104. Marsell R, Einhorn TA (2011) The biology of fracture healing. Inj Int J Care Inj 42:551–555

    Article  Google Scholar 

  105. Su YC, Fu JY, Du SK, Georgas E, Qin YX, Zheng YF, Wang YD, Zhu DH (2022) Biodegradable Zn–Sr alloys with enhanced mechanical and biocompatibility for biomedical applications. Smart Mater Med 3:117–127

    Article  Google Scholar 

  106. Jia B, Yang HT, Zhang ZC, Qu XH, Jia XF, Wu Q, Han Y, Zheng YF et al (2021) Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: in vitro and in vivo studies. Bioact Mater 6:1588–1604

    Article  CAS  Google Scholar 

  107. Yan TL, Wang X, Fan JL, Nie QD (2021) Microstructure and properties of biodegradable co-continuous (HA+β-TCP)/Zn–3Sn composite fabricated by vacuum casting-infiltration technique. Trans Nonferrous Met Soc China 31:3075–3086

    Article  CAS  Google Scholar 

  108. Young J, Reddy R-G (2020) Synthesis, mechanical properties, and in vitro corrosion behavior of biodegradable Zn–Li–Cu alloys. J Alloys Compd 844:156257

    Article  CAS  Google Scholar 

  109. Jiang JM, Qian Y, Huang H, Niu JL, Yuan GY (2022) Biodegradable Zn–Cu–Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents. Biomater Adv 133:112652

    Article  Google Scholar 

  110. Qu XH, Yang HT, Jia B, Yu ZF, Zheng YF, Dai K (2020) Biodegradable Zn–Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater 117:400–417

    Article  CAS  Google Scholar 

  111. Zou YL, Chen X, Chen B (2018) Effects of Ca concentration on degradation behavior of Zn–x Ca alloys in Hank’s solution. Mater Lett 218:193–196

    Article  CAS  Google Scholar 

  112. Wątroba M, Mech K, Bednarczyk W, Kawałko J, Marciszko-Wiąckowska M, Marzec M, Shepherd DET, Bała P (2022) Long-term in vitro corrosion behavior of Zn–3Ag and Zn–3Ag–05Mg alloys considered for biodegradable implant applications. Mater Des 213:110289

    Article  Google Scholar 

  113. Tang ZB, Huang H, Niu JL, Zhang L, Zhang H, Pei J, Tan JY, Yuan GY (2017) Design and characterizations of novel biodegradable Zn–Cu–Mg alloys for potential biodegradable implants. Mater Des 117:84–94

    Article  CAS  Google Scholar 

  114. Lin JX, Tong X, Wang K, Shi ZM, Li YC, Dargusch M, Wen CE (2021) Biodegradable Zn–3Cu and Zn–3Cu–0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications. J Mater Sci Technol 68:76–90

    Article  CAS  Google Scholar 

  115. Chen C, Yue R, Zhang J, Huang H, Niu JL, Yuan GY (2020) Biodegradable Zn–1.5Cu–1.5Ag alloy with anti-aging ability and strain hardening behavior for cardiovascular stents. Mater Sci Eng C 116:111172

    Article  CAS  Google Scholar 

  116. Li GN, Zhu SM, Nie JF, Zheng YF, Sun ZL (2021) Investigating the stress corrosion cracking of a biodegradable Zn–0.8 wt%Li alloy in simulated body fluid. Bioact Mater 6:1468–1478

    Article  CAS  Google Scholar 

  117. Zhang WT, Li P, Shen G, Mo XS, Zhou C, Alexander D, Rupp F, Geis-Gerstorfer J et al (2021) Appropriately adapted properties of hot-extruded Zn–0.5Cu–xFe alloys aimed for biodegradable guided bone regeneration membrane application. Bioact Mater 6:975–989

    Article  CAS  Google Scholar 

  118. Guo H, He Y, Zheng YF, Cui Y (2020) In vitro studies of biodegradable Zn–0.1Li alloy for potential esophageal stent application. Mater Lett 275:128190

    Article  CAS  Google Scholar 

  119. Lin JX, Tong X, Shi ZM, Zhang DC, Zhang LS, Wang K, Wei AP, Jin LF et al (2020) A biodegradable Zn–1Cu–0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomater 106:410–427

    Article  CAS  Google Scholar 

  120. Dambatta MS, Izman S, Kurniawan D, Farahany S, Yahaya B, Hermawan H (2015) Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn–3Mg alloy as potential biodegradable implant material. Mater Des 85:431–437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Research Project of Hebei Province Colleges and Universities with No. ZD2021034.

Author information

Authors and Affiliations

Authors

Contributions

LZ: Conceptualization, Data curation, Funding acquisition, Writing – original draft, Writing – review and editing. PY: Data curation. MZ: Data curation. XW: Conceptualization, Formal analysis, Writing – review and editing. YQ: Conceptualization, Data curation. TW: Formal analysis. BC: Writing – original draft. CC: Conceptualization, Formal analysis, Writing – review and editing.

Corresponding author

Correspondence to Lichen Zhao.

Ethics declarations

Conflict of interest

The authors declare that we have no known conflict of interest or competing interests.

Ethical standards

This work is a review article, and no ethical approval is required.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Table 7.

Table 7 Degradation rates of porous Zn-based scaffolds during immersion tests

Appendix 2

Table 8.

Table 8 Degradation rates of bulk Zn and its alloys during immersion tests

Appendix 3

Table 9.

Table 9 Weight losses of porous Zn-based scaffolds during immersion tests

Appendix 4

Table 10.

Table 10 Corrosion current densities and corrosion rates of porous Zn-based scaffolds and bulk Zn and its alloys

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Yuan, P., Zhang, M. et al. Preparation and properties of porous Zn-based scaffolds as biodegradable implants: a review. J Mater Sci 58, 8275–8316 (2023). https://doi.org/10.1007/s10853-023-08561-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08561-w

Navigation