Skip to main content
Log in

High-yield carbon derived from commercial phenol–formaldehyde resin for broadband microwave absorption by balancing conductivity and polarization loss

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lightweight and chemically stable carbon are widely applied as attractive microwave absorption materials (MAMs). However, the effective response bandwidth of pure carbonaceous MAMs is limited due to the imbalance between conductivity and polarization loss. Herein, carbon with a large number of amorphous/nanocrystalline uneven phase interfaces prepared from commercial phenol–formaldehyde resin (PF) through simple anoxic carbonization exhibited excellent microwave absorption performance by balancing conductivity and polarization loss. Benefiting from the modification of the carbon nanocrystalline, a suitable electrical conductivity is obtained with a large number of amorphous/nanocrystalline uneven phase interfaces, allowing more incident microwaves to be lost. Thus, PF-650 exhibits a strong reflection loss of − 59.62 dB and a broadband effective microwave absorption of 6.32 GHz at 2.35 mm. In contrast to typical carbonaceous MAMs with multiple chemical compositions and complicated microstructures, this work provides a promising approach to the preparation of highly efficient and yielding carbonaceous materials for practical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ren X, Gao Z, Wu G (2022) Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption. Compos Commun 35:101292. https://doi.org/10.1016/j.coco.2022.101292

  2. Ren X, Song Y, Gao Z et al (2023) Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption. J Mater Sci Technol 134:254–261. https://doi.org/10.1016/j.jmst.2022.07.004

    Article  Google Scholar 

  3. Zhang C, Li X, Shi Y et al (2022) Structure engineering of graphene nanocages toward high-performance microwave absorption applications. Adv Opt Mater 10:2101904. https://doi.org/10.1002/adom.202101904

    Article  CAS  Google Scholar 

  4. Wang C, Ding J, Gong C et al (2023) Hierarchical pomegranate-like MnO@N-doped carbon with enhanced conduction loss and interfacial polarization for tunable and broadband microwave absorption. J Mater Sci 58:211–229. https://doi.org/10.1007/s10853-022-08008-8

    Article  CAS  Google Scholar 

  5. Ding J, Song K, Gong C et al (2022) Design of conical hollow ZnS arrays vertically grown on carbon fibers for lightweight and broadband flexible absorbers. J Colloid Interface Sci 607:1287–1299. https://doi.org/10.1016/j.jcis.2021.08.189

    Article  CAS  Google Scholar 

  6. Wang S, Li Q, Hu K, et al (2021) A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption. Appl Surface Sci 544:148891. https://doi.org/10.1016/j.apsusc.2020.148891

  7. Cheng Z, Wang R, Cao Y et al (2022) Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO 2 composite aerogel. Adv Funct Mater 32:2205160. https://doi.org/10.1002/adfm.202205160

    Article  CAS  Google Scholar 

  8. Zhi D, Li T, Qi Z, et al (2022) Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem Eng J 433:134496. https://doi.org/10.1016/j.cej.2022.134496

  9. Huang Q, Zhao Y, Wu Y et al (2022) A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem Eng J 446:137279. https://doi.org/10.1016/j.cej.2022.137279

  10. Lei L, Yao Z, Zhou J, et al (2020) 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos Sci Technol 200:108479. https://doi.org/10.1016/j.compscitech.2020.108479

  11. He P, Zhang J, Xiong Y et al (2022) Mechanochemical synthesis of core-shell carbon black@acrylic resin nanocomposites with enhanced microwave absorption. Compos Sci Technol 228:109665. https://doi.org/10.1016/j.compscitech.2022.109665

  12. Wang Y-Y, Song-Yang S-J et al (2022) Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading. J Mater Sci Technol 102:115–122. https://doi.org/10.1016/j.jmst.2021.06.032

    Article  Google Scholar 

  13. Liu D, Yang L, Wang F et al (2022) Hierarchical carbon nanotubes@Ni/C foams for high-performance microwave absorption. Carbon 196:867–876. https://doi.org/10.1016/j.carbon.2022.05.057

    Article  CAS  Google Scholar 

  14. Zhang C, Shi Y, Li X, et al (2022) Architecture inspired structure engineering toward carbon nanotube hybrid for microwave absorption promotion. iScience 25:105203. https://doi.org/10.1016/j.isci.2022.105203

  15. Tao J, Zhou J, Yao Z et al (2021) Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 172:542–555. https://doi.org/10.1016/j.carbon.2020.10.062

    Article  CAS  Google Scholar 

  16. Luo J, Feng M, Dai Z et al (2022) MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. https://doi.org/10.1007/s12274-022-4411-6

    Article  Google Scholar 

  17. Okwundu OS, Aniekwe EU, Nwanno CE (2018) Unlimited potentials of carbon: different structures and uses (a Review). Metall Mater Eng 24:145–171. https://doi.org/10.30544/388

  18. Fan D, Wei B, Wu R et al (2021) Dielectric control of ultralight hollow porous carbon spheres and excellent microwave absorbing properties. J Mater Sci 56:6830–6844. https://doi.org/10.1007/s10853-021-05780-x

    Article  CAS  Google Scholar 

  19. Xu H, Yin X, Li M et al (2018) Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 132:343–351. https://doi.org/10.1016/j.carbon.2018.02.040

    Article  CAS  Google Scholar 

  20. Nan H, Luo F, Jia H et al (2021) The effect of temperature on structure and permittivity of carbon microspheres as efficient absorbent prepared by facile and large-scale method. Carbon 185:650–659. https://doi.org/10.1016/j.carbon.2021.09.070

    Article  CAS  Google Scholar 

  21. Shukla SK, Srivastava D, Srivastava K (2015) Synthesis, spectral and thermal degradation kinetics of the epoxidized resole resin derived from cardanol. Adv Polym Technol 34:21469. https://doi.org/10.1002/adv.21469

    Article  CAS  Google Scholar 

  22. Chen ZQ, Chen YF, Liu HB (2013) Study on thermal degradation of phenolic resin. Appl Mech Mater 422:24–28. https://doi.org/10.4028/www.scientific.net/AMM.422.24

    Article  CAS  Google Scholar 

  23. Morterra C, Low MJD (1985) I.R. studies of carbons—VII. The pyrolysis of a phenol-formaldehyde resin. Carbon 23:525–530. https://doi.org/10.1016/0008-6223(85)90088-0

    Article  CAS  Google Scholar 

  24. Chen S, Liu Z, Jiang S, Hou H (2020) Carbonization: a feasible route for reutilization of plastic wastes. Sci Total Environ 710:136250. https://doi.org/10.1016/j.scitotenv.2019.136250

  25. Zheng F, Ren Z, Xu B et al (2021) Elucidating multiple-scale reaction behaviors of phenolic resin pyrolysis via TG-FTIR and ReaxFF molecular dynamics simulations. J Anal Appl Pyrolysis 157:105222. https://doi.org/10.1016/j.jaap.2021.105222

  26. Ouchi K (1966) Infra-red study of structural changes during the pyrolysis of a phenol-formaldehyde resin. Carbon 4:59–66. https://doi.org/10.1016/0008-6223(66)90009-1

    Article  CAS  Google Scholar 

  27. Wang J, Jiang H, Jiang N (2009) Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochim Acta 496:136–142. https://doi.org/10.1016/j.tca.2009.07.012

    Article  CAS  Google Scholar 

  28. Trick KA, Saliba TE (1995) Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33:1509–1515. https://doi.org/10.1016/0008-6223(95)00092-R

    Article  CAS  Google Scholar 

  29. de la Puente G, Pis JJ, Menéndez JA, Grange P (1997) Thermal stability of oxygenated functions in activated carbons. J Anal Appl Pyrolysis 43:125–138. https://doi.org/10.1016/S0165-2370(97)00060-0

    Article  Google Scholar 

  30. Terzyk AP (2001) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids Surf A 177:23–45

    Article  CAS  Google Scholar 

  31. Ko T-H, Kuo W-S, Chang Y-H (2001) Microstructural changes of phenolic resin during pyrolysis. J Appl Polym Sci 81:1084–1089. https://doi.org/10.1002/app.1530

    Article  CAS  Google Scholar 

  32. Xue JS, TaozhengJR D (1996) Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34:193–200

    Article  Google Scholar 

  33. Nan H, Luo F, Jia H et al (2022) Balancing between polarization and conduction loss toward strong electromagnetic wave absorption of hard carbon particles with morphology heterogeneity. ACS Appl Mater Interfaces 14:19836–19846. https://doi.org/10.1021/acsami.2c01171

    Article  CAS  Google Scholar 

  34. Hou Y, Quan J, Su X et al (2021) Carbonized silk fiber mat: a flexible and broadband microwave absorber, and the length effect. ACS Sustain Chem Eng 9:12747–12754. https://doi.org/10.1021/acssuschemeng.1c02857

    Article  CAS  Google Scholar 

  35. Gong C, Jiang J, Ding J et al (2022) Graphene oxide supported yolk—shell ZnS/Ni3S4 with the adjustable air layer for high performance of electromagnetic wave absorber. J Colloid Interface Sci 617:620–632. https://doi.org/10.1016/j.jcis.2022.03.005

    Article  CAS  Google Scholar 

  36. Ko T-H, Kuo W-S, Chang Y-H (2000) Raman study of the microstructure changes of phenolic resin during pyrolysis. Polym Compos 21:745–750. https://doi.org/10.1002/pc.10229

    Article  CAS  Google Scholar 

  37. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos Trans A Math Phys Eng Sci 362(1824):2477–2512

    Article  CAS  Google Scholar 

  38. Jiménez F, Mondragón F, López D (2012) Structural changes in coal chars after pressurized pyrolysis. J Anal Appl Pyrolysis 95:164–170. https://doi.org/10.1016/j.jaap.2012.02.003

    Article  CAS  Google Scholar 

  39. Zaida A, Bar-Ziv E, Radovic LR, Lee Y-J (2007) Further development of Raman Microprobe spectroscopy for characterization of char reactivity. Proc Combust Inst 31:1881–1887. https://doi.org/10.1016/j.proci.2006.07.011

    Article  CAS  Google Scholar 

  40. Chabalala VP, Wagner N, Potgieter-Vermaak S (2011) Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1. Fuel Process Technol 92:750–756. https://doi.org/10.1016/j.fuproc.2010.09.006

    Article  CAS  Google Scholar 

  41. Bücker W (1973) Preparation and DC conductivity of an amorphous organic semiconducting system. J Non-Cryst Solids 12:115–128. https://doi.org/10.1016/0022-3093(73)90058-6

    Article  Google Scholar 

  42. Yang W, Li R, Jiang B et al (2020) Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents. Carbon 166:218–226. https://doi.org/10.1016/j.carbon.2020.05.043

    Article  CAS  Google Scholar 

  43. Ye X, Chen Z, Li M et al (2019) Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment. ACS Sustain Chem Eng 7:18395–18404. https://doi.org/10.1021/acssuschemeng.9b04062

    Article  CAS  Google Scholar 

  44. Wu Y, Tan S, Zhao Y et al (2023) Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog Mater Sci 135:101088. https://doi.org/10.1016/j.pmatsci.2023.101088

  45. Gong C, Ding J, Wang C, et al (2023) Defect-induced dipole polarization engineering of electromagnetic wave absorbers: insights and perspectives. Compos Part B: Eng 252:110479. https://doi.org/10.1016/j.compositesb.2022.110479

  46. Mu Z, Wei G, Zhang H et al (2022) The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res 15:7731–7741. https://doi.org/10.1007/s12274-022-4500-6

    Article  CAS  Google Scholar 

  47. Wang J, Huyan Y, Yang Z et al (2019) Tubular carbon nanofibers: synthesis, characterization and applications in microwave absorption. Carbon 152:255–266. https://doi.org/10.1016/j.carbon.2019.06.048

    Article  CAS  Google Scholar 

  48. Deng W, Li T, Li H et al (2022) Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. J Colloid Interface Sci 618:129–140. https://doi.org/10.1016/j.jcis.2022.03.071

    Article  CAS  Google Scholar 

  49. Xu J, Cui Y, Wang J et al (2020) Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties. Chem Eng J 401:126027. https://doi.org/10.1016/j.cej.2020.126027

  50. Liu D, Du Y, Wang F et al (2020) MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157:478–485. https://doi.org/10.1016/j.carbon.2019.10.056

    Article  CAS  Google Scholar 

  51. Yang W, Yang X, Hu J et al (2021) Mushroom cap-shaped porous carbon particles with excellent microwave absorption properties. Appl Surf Sci 564:150437. https://doi.org/10.1016/j.apsusc.2021.150437

  52. Li X, Yu L, Zhao W et al (2020) Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem Eng J 379:122393. https://doi.org/10.1016/j.cej.2019.122393

  53. Wu M-Y, Lou Q, Zheng G-S et al (2021) Towards efficient carbon nanodot-based electromagnetic microwave absorption via nitrogen doping. Appl Surf Sci 567:150897. https://doi.org/10.1016/j.apsusc.2021.150897

  54. Qin M, Zhang L, Wu H (2022) Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv Sci 9:2105553. https://doi.org/10.1002/advs.202105553

    Article  CAS  Google Scholar 

  55. Gu W, Ong SJH, Shen Y et al (2022) A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv Sci 9:2204165. https://doi.org/10.1002/advs.202204165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51802278), Natural Science Foundation of Hebei Province (No. E2022203082, B2021203012), and Science and Technology Project of Higher Education in Hebei Province (QN2021140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueai Li or Haiyan Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10853_2023_8465_MOESM1_ESM.docx

FTIR spectrum and TG curve of PF of PF, the TEM image of PF-600/650/700/800, C/H and C/O mass ratio of PF-600/650/700/800, XRD pattern of the definition of the parameter R and deconvoluted Raman spectra for PF-600/700/800, Frequency-dependent complex permeability: real part, imaginary part, attenuation constant α and Cole–Cole plots of PF-600/650/700/800, nitrogen adsorption–desorption isotherms and pore size distributions calculated result of PF-600/650/700/800, the impedance matching value at the optimum effective absorption bandwidth condition of the PF-600/650/700/800, carbon yield of different precursors, the elementary compositions of PF-600/650/700/800.

Supplementary file1 (DOCX 1557 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Li, X., Liu, Q. et al. High-yield carbon derived from commercial phenol–formaldehyde resin for broadband microwave absorption by balancing conductivity and polarization loss. J Mater Sci 58, 7048–7059 (2023). https://doi.org/10.1007/s10853-023-08465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08465-9

Navigation