Skip to main content
Log in

Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of thermal treatment on the microstructure and mechanical properties of electrospun polystyrene (PS) fibers were investigated. Two types of thermal treatments were performed: (1) slow cooling from 80 °C to room temperature, (2) constant-temperature annealing at 110 °C for 10–120 min. SEM images showed that the internal porosity of the fibers decreases with a decreasing cooling rate and with an increasing annealing time. The severity of fusion of the fiber mats during cutting decreased with a decreasing cooling rate and was eliminated by constant-temperature annealing at 110 °C for 10 min. N2-physisorption did not show any relationship between the cooling rate and porosity of the fibers, but it was found that the volumes of micro- and mesopores in the fibers decreased with an increasing annealing time. Uniaxial tensile testing showed a degradation in mechanical properties at a cooling rate of 0.1 °C s−1 with a recovery in strength and ductility, but further degradation of stiffness at 0.03 °C s−1. Similar degradation of mechanical properties was found after annealing at 110 °C for 10 min, followed by a recovery of strength, stiffness, and ductility at 60 min. This work demonstrates that annealing PS fibers is a viable method to decrease the porosity and eliminate any potential fusion of electrospun PS fiber mats so they can be used in other manufacturing processes, such as ceramic processing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability Material

Experimental data can be available by contacting the corresponding author.

References

  1. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223. https://doi.org/10.1088/0957-4484/7/3/009

    Article  CAS  Google Scholar 

  2. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170. https://doi.org/10.1002/adma.200400719

    Article  CAS  Google Scholar 

  3. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chemie Int Ed 46:5670–5703. https://doi.org/10.1002/anie.200604646

    Article  CAS  Google Scholar 

  4. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  5. MacDiarmid AG, Jones WE, Norris ID et al (2001) Electrostatically-generated nanofibers of electronic polymers. Synth Met 119:27–30. https://doi.org/10.1016/S0379-6779(00)00597-X

    Article  CAS  Google Scholar 

  6. Choi SW, Jo SM, Lee WS, Kim YR (2003) An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater 15:2027–2032. https://doi.org/10.1002/adma.200304617

    Article  CAS  Google Scholar 

  7. Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci Pure Appl Chem 38 A:1231–1243. https://doi.org/10.1081/MA-100108380

  8. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromol 3:232–238. https://doi.org/10.1021/bm015533u

    Article  CAS  Google Scholar 

  9. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  10. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY (2017) Electrospun nanofibers: new generation materials for advanced applications. Mater Sci Eng B 217:36–48. https://doi.org/10.1016/j.mseb.2017.01.001

    Article  CAS  Google Scholar 

  11. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 89:341–353. https://doi.org/10.1016/S0168-3659(03)00097-X

    Article  CAS  Google Scholar 

  12. Bhattarai N, Cha DI, Bhattarai SR, Khil MS, Kim HY (2003) Biodegradable electrospun mat: novel block copolymer of poly (p-dioxanone-co-L-lactide)-block-poly(ethylene glycol). J Polym Sci Part B Polym Phys 41:1955–1964. https://doi.org/10.1002/polb.10547

    Article  CAS  Google Scholar 

  13. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromol 3:1233–1239. https://doi.org/10.1021/bm025581u

    Article  CAS  Google Scholar 

  14. Norris ID, Shaker MM, Ko FK, MacDiarmid AG (2000) Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 114:109–114. https://doi.org/10.1016/S0379-6779(00)00217-4

    Article  CAS  Google Scholar 

  15. Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales IG (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J Am Chem Soc 125:1154–1155. https://doi.org/10.1021/ja028983i

    Article  CAS  Google Scholar 

  16. Wang Y, Furlan R, Ramos I, Santiago-Aviles JJ (2004) Synthesis and characterization of micro/nanoscopic Pb (Zr0.52Ti0.48)O3 fibers by electrospinning. Appl Phys A Mater Sci Process 78:1043–1047. https://doi.org/10.1007/s00339-003-2152-2

    Article  CAS  Google Scholar 

  17. Yan B, Zheng J, Wang F, Zhao L, Zhang Q, Xu W, He S (2021) Review on porous carbon materials engineered by ZnO templates: design, synthesis and capacitance performance. Mater Des 201:109518. https://doi.org/10.1016/j.matdes.2021.109518

  18. Wang C, Yan B, Zheng J, Feng L et al (2022) Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv Powder Mater 1:100018. https://doi.org/10.1016/j.apmate.2021.11.005

  19. Fang D, Yan B, Agarwal S, Xu W, Zhang Q, He S, Hou H (2021) Electrospun Poly[poly(2,5-benzophenone)]bibenzopyrrolone/polyimide nanofiber membrane for high-temperature and strong-alkali supercapacitor. J Mater Sci 56:9344–9355. https://doi.org/10.1007/s10853-021-05860-y

    Article  CAS  Google Scholar 

  20. Subrahmanya TM, Bin Arshad A, Lin PT et al (2021) A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv 11:9638–9663. https://doi.org/10.1039/D1RA00060H

    Article  Google Scholar 

  21. Padaki M, Subrahmanya TM, Prasad D, Déon S, Jadhav AH (2021) Electrospun nanofibers: role of nanofibers in water remediation and effect of experimental variables on their nano topography and application processes. Environ Sci Water Res Technol 7:2166–2205. https://doi.org/10.1039/D1EW00393C

    Article  CAS  Google Scholar 

  22. Subrahmanya TM, Widakdo J, Austria HFM, et al (2023) Flow-through in-situ evaporation membrane enabled self-heated membrane distillation for efficient desalination of hypersaline water. J Chem Eng 452:139170. https://doi.org/10.1016/j.cej.2022.139170.

  23. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surfaces A Physicochem Eng Asp 187:469–481. https://doi.org/10.1016/S0927-7757(01)00616-1

    Article  Google Scholar 

  24. Schreuder-Gibson H, Gibson P, Senecal K et al (2002) Protective textile materials based on electrospun nanofibers. J Adv Mater 34:44–55

    Google Scholar 

  25. Kim JS, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131. https://doi.org/10.1002/pc.10340

    Article  CAS  Google Scholar 

  26. Demir MM, Gulgun MA, Menceloglu YZ et al (2004) Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules 37:1787–1792. https://doi.org/10.1021/ma035163x

    Article  CAS  Google Scholar 

  27. Hicks DC, Zhou Z, Liu G, Tallon C (2019) Aligned continuous cylindrical pores derived from electrospun polymer fibers in titanium diboride. Int J Appl Ceram Technol 16:802–813. https://doi.org/10.1111/ijac.13122

    Article  CAS  Google Scholar 

  28. Hou H, Jun Z, Reuning A, Schaper A, Wendorff JH, Greiner A (2002) Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers [3]. Macromolecules 35:2429–2431. https://doi.org/10.1021/ma011607i

    Article  CAS  Google Scholar 

  29. Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, Kim HY (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25:2595–2602. https://doi.org/10.1016/j.biomaterials.2003.09.043

    Article  CAS  Google Scholar 

  30. Verreck G, Chun I, Rosenblatt J et al (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360. https://doi.org/10.1016/S0168-3659(03)00342-0

    Article  CAS  Google Scholar 

  31. Rho KS, Jeong L, Lee G et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461. https://doi.org/10.1016/j.biomaterials.2005.08.004

    Article  CAS  Google Scholar 

  32. Wang X, Drew C, Lee SH, Senecal KJ, Kumar J, Samuelson LA (2002) Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett 2:1273–1275. https://doi.org/10.1021/nl020216u

    Article  CAS  Google Scholar 

  33. Wang C, Hsu CH, Lin JH (2006) Scaling laws in electrospinning of polystyrene solutions. Macromolecules 39:7662–7672. https://doi.org/10.1021/ma060866a

    Article  CAS  Google Scholar 

  34. Pai CL, Boyce MC, Rutledge GC (2009) Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules 42:2102–2114. https://doi.org/10.1021/ma802529h

    Article  CAS  Google Scholar 

  35. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37:573–578. https://doi.org/10.1021/ma0351975

    Article  CAS  Google Scholar 

  36. Uyar T, Besenbacher F (2008) Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer (Guildf) 49:5336–5343. https://doi.org/10.1016/j.polymer.2008.09.025

    Article  CAS  Google Scholar 

  37. Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG (2003) The change of bead morphology formed on electrospun polystyrene fibers. Polymer (Guildf) 44:4029–4034. https://doi.org/10.1016/S0032-3861(03)00345-8

    Article  CAS  Google Scholar 

  38. Li L, Hashaikeh R, Arafat HA (2013) Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). J Memb Sci 436:57–67. https://doi.org/10.1016/j.memsci.2013.02.037

    Article  CAS  Google Scholar 

  39. Vorselaars B, Lyulin AV, Michels MAJ (2009) Deforming glassy polystyrene: influence of pressure, thermal history, and deformation mode on yielding and hardening. J Chem Phys 130:14. https://doi.org/10.1063/1.3077859

    Article  CAS  Google Scholar 

  40. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39. https://doi.org/10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  41. Tan EPS, Lim CT (2006) Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Nanotechnology 17:2649–2654. https://doi.org/10.1088/0957-4484/17/10/034

    Article  CAS  Google Scholar 

  42. Tsuji H, Ikada Y (1995) Properties and morphologies of poly(L-lactide): 1. Annealing condition effects on properties and morphologies of poly(L-lactide). Polymer (Guildf) 36:2709–2716. https://doi.org/10.1016/0032-3861(95)93647-5

    Article  CAS  Google Scholar 

  43. Fennessey SF, Farris RJ (2004) Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer (Guildf) 45:4217–4225. https://doi.org/10.1016/j.polymer.2004.04.001

    Article  CAS  Google Scholar 

  44. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106. https://doi.org/10.1088/0957-4484/17/14/R01

    Article  CAS  Google Scholar 

  45. Zhou Z, Liu T, Khan AU, Liu G (2019) Block copolymer-based porous carbon fibers. Sci Adv 5. https://doi.org/10.1126/sciadv.aau6852

  46. Lin J, Ding B, Jianyong Y, Hsieh Y (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2:521–528. https://doi.org/10.1021/am900736h

    Article  CAS  Google Scholar 

  47. Cicero JA, Dorgan JR (2001) Physical properties and fiber morphology of Poly(lactic acid) obtained from continuous two-step melt spinning. J Polym Environ 9:1–10. https://doi.org/10.1023/A:1016012818800

    Article  CAS  Google Scholar 

  48. Yuan X, Mak AFT, Kwok KW, Yung BKO, Yao K (2001) Characterization of poly(L-lactic acid) fibers produced by melt spinning. J Appl Polym Sci 81:251–260. https://doi.org/10.1002/app.1436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Materials Science and Engineering and the Department of Chemistry at Virginia Tech for supporting this work. Juan Diego Shiraishi Lombard acknowledges the financial support from the New Horizon Graduate Scholars program. The authors thank David Cyprian Hicks (Department of Materials Science and Engineering, Virginia Tech) and Zhengping Zhou (Department of Chemistry, Virginia Tech) for synthesizing the fibers used in this work, Eric Gilmer (Department of Chemical Engineering, Virginia Tech) for helping with DMA testing, and Kaitlyn Shirey (Department of Materials Science and Engineering, Virginia Tech) for her assistance in SEM image acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Tallon.

Ethics declarations

Conflict of interest

Juan Diego Shiraishi Lombard received financial support from the New Horizon Graduate Scholars program at Virginia Tech for his PhD work. The authors declare that they have no conflict of interest. There was no experiment involving any human tissue in this work.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 370 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombard, J.D.S., Liu, T., Liu, G. et al. Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior. J Mater Sci 58, 6009–6024 (2023). https://doi.org/10.1007/s10853-023-08339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08339-0

Navigation