Skip to main content
Log in

Phase equilibria and solidified microstructure in Cu–Cr–La ternary system via experimental investigation and thermodynamic calculation

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phase equilibria and solidified microstructure of Cu–Cr–La system were investigated by a combination of key experiments and thermodynamic calculations. Six Cu–Cr–La ternary alloys were utilized to determine the solidified microstructure, isothermal section at 850 °C and phase transition temperatures along 5.0 at.% La by means of X-ray diffraction, scanning electron microscopy, electron probe micro-analysis and differential scanning calorimetric techniques. By considering the present measured equilibrium data, the thermodynamic description for the Cu–Cr–La system was established via CALPHAD approach. The calculated phase relationship and phase fractions in equilibrium state shows a satisfactory agreement with the determined data. After that, the non-equilibrium solidification curves in different series Cu–Cr–La alloys were simulated with the Scheil–Gulliver model. The effects of La or Cr additions on the solidification sequences, phase transition temperatures and phase fractions in Cu–Cr–La alloys were analyzed. It is believed that the present work offers a theoretical basis for the novel design of Cu–Cr–La alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Dobatkin SV, Gubicza J, Shangina DV, Bochvar NR, Tabachkova NY (2015) High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation. Mater Lett 153:5–9. https://doi.org/10.1016/j.matlet.2015.03.144

    Article  CAS  Google Scholar 

  2. Yuan Y, Li Z, Xiao Z, Zhao Z, Yang Z (2017) Microstructure evolution and properties of Cu–Cr alloy during continuous extrusion process. J Alloy Compd 703:454–460. https://doi.org/10.1016/j.jallcom.2017.01.355

    Article  CAS  Google Scholar 

  3. Huang H, Wang YF, Wang MS, Song LY, Li YS, Gao L, Huang CX, Zhu YT (2019) Optimizing the strength, ductility and electrical conductivity of a Cu–Cr–Zr alloy by rotary swaging and aging treatment. Mater Sci Eng A 746:211–216. https://doi.org/10.1016/j.msea.2019.01.002

    Article  CAS  Google Scholar 

  4. Shangina D, Maksimenkova Y, Bochvar N, Serebryany V, Raab G, Vinogradov A, Skrotzki W, Dobatkin S (2016) Influence of alloying with hafnium on the microstructure, texture, and properties of Cu–Cr alloy after equal channel angular pressing. J Mater Sci 51:5493–5501. https://doi.org/10.1007/s10853-016-9854-2

    Article  CAS  Google Scholar 

  5. Xu S, Fu HD, Wang YT, Xie JX (2018) Effect of Ag addition on the microstructure and mechanical properties of Cu–Cr alloy. Mater Sci Eng A 726:208–214. https://doi.org/10.1016/j.msea.2018.04.077

    Article  CAS  Google Scholar 

  6. Li Q, Xie S, Mi X, Liu Y, Wu P, Cheng L (2006) Influence of Cerium and Yttrium on Cu–Cr–Zr Alloys. J Rare Earths 24:367–371. https://doi.org/10.1016/S1002-0721(07)60403-7

    Article  Google Scholar 

  7. Xie M, Liu J, Lu X, Shi A, Den Z, Jang H, Zheng F (2001) Investigation on the Cu–Cr–RE alloys by rapid solidification. Mater Sci Eng A 304:529–533. https://doi.org/10.1016/S0921-5093(00)01509-4

    Article  Google Scholar 

  8. Liu P, Kang BX, Cao XG, Huang JL, Gu HC (2000) Strengthening mechanisms in a rapidly solidified and aged Cu–Cr alloy. J Mater Sci 35:1691–1694. https://doi.org/10.1023/A:1004760014886

    Article  CAS  Google Scholar 

  9. Lu Z, Zhang L (2017) Thermodynamic description of the quaternary Al–Si–Mg–Sc system and its application to the design of novel Sc-additional A356 alloys. Mater Des 116:427–437. https://doi.org/10.1016/j.matdes.2016.12.034

    Article  CAS  Google Scholar 

  10. Tang Y, Li Y, Zhao W, Roslyakova I, Zhang L (2020) Thermodynamic descriptions of quaternary Mg–Al–Zn–Bi system supported by experiments and their application in descriptions of solidification behavior in Bi-additional AZ casting alloys. J Magnes Alloy 8:1238–1252. https://doi.org/10.1016/j.jma.2020.03.007

    Article  CAS  Google Scholar 

  11. Liu ZK, Chen LQ, Raghavan P, Du Q, Sofo JO, Langer SA, Wolverton C (2004) An integrated framework for multi-scale materials simulation and design. J Comput Aided Mater Des 11:183–199. https://doi.org/10.1007/s10820-005-3173-2

    Article  Google Scholar 

  12. Si H, Jiang Y, Tang Y, Zhang L (2019) Stable and metastable phase equilibria in binary Mg-Gd system: a comprehensive understanding aided by CALPHAD modeling. J Magnes Alloy 7:509–513. https://doi.org/10.1016/j.jma.2019.04.006

    Article  CAS  Google Scholar 

  13. Jung JG, Cho YH, Lee JM, Kim HW, Euh K (2019) Designing the composition and processing route of aluminum alloys using CALPHAD: case studies. Calphad 64:236–247. https://doi.org/10.1016/j.calphad.2018.12.010

    Article  CAS  Google Scholar 

  14. Kaufman L (1978) Coupled phase diagrams and thermochemical data for transition metal binary systems III. Calphad 2:117–146. https://doi.org/10.1016/0364-5916(78)90031-7

    Article  CAS  Google Scholar 

  15. Hämäläinen M, Jääskeläinen K, Luoma R, Nuotio M, Taskinen P, Teppo O (1990) A thermodynamic analysis of the binary alloy systems Cu–Cr Cu–Nb and Cu–V. CALPHAD 14(2):125–137. https://doi.org/10.1016/0364-5916(90)90014-Q

    Article  Google Scholar 

  16. Zeng KJ, Haemaelaeinen M (1995) A theoretical study of the phase equilibria in the Cu–Cr–Zr system. J Alloy Compd 220:53–61. https://doi.org/10.1016/0925-8388(94)06029-0

    Article  CAS  Google Scholar 

  17. Zhou ZM, Gao J, Li F, Wang YP, Kolbe M (2011) Experimental determination and thermodynamic modeling of phase equilibria in the Cu–Cr system. J Mater Sci 46:7039–7045. https://doi.org/10.1007/s10853-011-5672-8

    Article  CAS  Google Scholar 

  18. Liu YL, Zhou P, Liu SH, Du Y (2017) Experimental investigation and thermodynamic description of the Cu–Cr–Zr system. Calphad 59:1–11. https://doi.org/10.1016/j.calphad.2017.07.002

    Article  CAS  Google Scholar 

  19. Povoden E, Chen M, Grundy AN, Ivas T, Gauckler LJ (2009) Thermodynamic assessment of the La–Cr–O system. J Phase Equilib Diff 30(1):12–27. https://doi.org/10.1007/s11669-008-9463-0

    Article  CAS  Google Scholar 

  20. Chan W, Gao MC, Doğan ÖN, King P, Rollett AD (2009) Thermodynamic assessment of Cr-rare earth systems. J Phase Equilib Diff 30(6):578–586. https://doi.org/10.1007/s11669-009-9581-3

    Article  CAS  Google Scholar 

  21. Qi G, Itagaki K, Mey SA, Spencer PJ (1989) Heat content measurement and thermodynamic evaluation of the Cu–La system. Z Metallkd 80:883–887. https://doi.org/10.1515/ijmr-1989-801206

    Article  CAS  Google Scholar 

  22. Wang JX (1992) The Thermodynamics of Cu–La, Cu–Ce Systems. J Rare Earth 1:9–14. CNKI:SUN:YXTB.0.1992-01-002

  23. Du Z, Xu Y, Zhang W (1999) Thermodynamic assessment of the Cu–La system. J Alloy Compd 289(1–2):88–95. https://doi.org/10.1016/S0925-8388(99)00080-8

    Article  CAS  Google Scholar 

  24. Meyer-Liautaud F, Allibert CH, Moreau JM (1985) New phases in the system La Cu. J Less-Common Met 110(1–2):81–90. https://doi.org/10.1016/0022-5088(85)90308-X

    Article  CAS  Google Scholar 

  25. Bloch JM, Shaltiel D, Davidov D (1981) Preparation and study of new intermetallic compounds with the NaZn13 structure: LaCu13, PrCu13. J Less-Common Met 79(2):323–327. https://doi.org/10.1016/0022-5088(81)90082-5

    Article  CAS  Google Scholar 

  26. Bolmgren H, Lundström T (1990) The ternary system La–Cu–B at 650 °C and some remarks on the La–Cu system. J Less-Common Met 163(1):79–87. https://doi.org/10.1016/0022-5088(90)90087-Z

    Article  CAS  Google Scholar 

  27. Senturk BS, Liu Y, Mantese JV, Alpay SP, Aindow M (2012) Effects of microstructure on native oxide scale development and electrical characteristics of eutectic Cu–Cu6La alloys. Acta Mater 60(3):851–859. https://doi.org/10.1016/j.actamat.2011.11.013

    Article  CAS  Google Scholar 

  28. Cirafici S, Palenzona A (1977) The lanthanum-copper system. J Less-Common Met 53(2):199–203. https://doi.org/10.1016/0022-5088(77)90104-7

    Article  CAS  Google Scholar 

  29. Qi G, Itagaki L, Yazawa A (1989) High temperature heat content measurements of Cu–RE (RE=Y, La, Ce, Pr, Nd) binary systems. Mater Trans JIM 30:273–282. https://doi.org/10.2320/matertrans1989.30.273

    Article  CAS  Google Scholar 

  30. Sudavtsova VS, Shevchenko MA, Ivanov MI, Berezutskii VV, Kudin VG (2017) Thermodynamic properties of liquid copper-lanthanum alloys. Russ J Phys Chem A 91(6):990–997. https://doi.org/10.1134/S0036024417060231

    Article  CAS  Google Scholar 

  31. Watanabe S, Kleppa OJ (1984) Thermochemistry of alloys of transition metals: part IV. Alloys of copper with scandium, yttrium, lanthanum, and lutetium. Metall Mater Trans B 15(2):357–368. https://doi.org/10.1007/BF02667340

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports are from the National Natural Science Foundation of China (Grant No. 52101012), National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials (Grant No. HKDNM2019019). Y. Tang acknowledges the financial support from Yuanguang fellowship released by Hebei University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Tang.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interest.

Ethical approval

Ethics approval was not required for this research.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, M., Tang, Y., Zhang, E. et al. Phase equilibria and solidified microstructure in Cu–Cr–La ternary system via experimental investigation and thermodynamic calculation. J Mater Sci 58, 3323–3333 (2023). https://doi.org/10.1007/s10853-023-08223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08223-x

Navigation