Skip to main content
Log in

Mechanical behavior and microstructure evolution of Al/AlCu alloy interface

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, perfect interface model of Al/AlCu alloy and defect interface model of Al/AlCu alloy after cracks were introduced at different positions of the interface were established by using cohesive zone modeling method. Classical molecular dynamics simulation was used to study the deformation behavior and microstructure evolution of Al/AlCu alloy interface model at a strain rate of 0.05 Å/ps and the temperature of 300 K. The simulation results show that perfect interface exhibits a uniform plastic deformation stage due to structural relaxation after yielding, while there is no structural relaxation during the deformation of defect interface and the tensile strength is much lower than that of perfect interface as well. In the process of deformation, stacking faults formed in perfect interface and cracks are generated and expanded in Al matrix, while there was no stacking faults forming along with the expansion and cracking at the position of introduced cracks in defect interface. Massive dislocation nucleation leads to the reduction in stress at the perfect and defect interfaces after yielding. The extension of Shockley partial dislocation and the nucleation of Stair-rod dislocation are the main mechanisms of interface deformation. Densities of Shockley partial dislocation and Stair-rod dislocation decrease with increasing strain before crack propagation. This study enriches the analysis of microstructure evolution of Al/AlCu alloy interface and similar interfaces during deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the fundings of this study are available upon reasonable request from the authors.

References

  1. Küçüktürk G, Atkaya M (2022) Numerical and experimental study for electron beam welding process of Al6061-T6 material[J]. Mater Rese Express 9(4):046504

    Article  Google Scholar 

  2. Moreno A, Rodriguez R, Gomez FR (2021) Bond pad probe marks effect on intermetallic coverage[J]. J Eng Res Rep 1:101–106

    Google Scholar 

  3. Grosskopf C (2021) JEDEC’s generation of wire bond pull test methods to address pulling of copper wire bonds[C]//54th international symposium on microelectronics. Int Symp Microelectron 1:000249–000255

    Article  Google Scholar 

  4. Ashok Kumar GI, Lambert A, Caperton J et al (2021) Comparative study of chloride and fluoride induced aluminum pad corrosion in wire-bonded device packaging assembly[J]. Corros Mater Degrad 2(3):447–460

    Article  Google Scholar 

  5. Qi J, Hung NC, Li M et al (2006) Effects of process parameters on bondability in ultrasonic ball bonding[J]. Scr Mater 54(2):293–297

    Article  CAS  Google Scholar 

  6. Xu H, Liu C, Silberschmidt VV et al (2010) Growth of intermetallic compounds in thermosonic copper wire bonding on aluminum metallization[J]. J Electron Mater 39(1):124–131

    Article  Google Scholar 

  7. Singh G, Haseeb A (2016) Effect of pedestal temperature on bonding strength and deformation characteristics for 5N copper wire bonding[J]. J Electron Mater 45(6):3244–3248

    Article  CAS  Google Scholar 

  8. Zhang B, Qian K, Wang T, et al. (2009) Behaviors of palladium in palladium coated copper wire bonding process[C]//2009 International Conference on Electronic Packaging Technology & High Density Packaging. IEEE, 662–665.

  9. Shuang L, Fuxiang H, Cheng P, et al. (2019) Research progress on copper and silver bonding wires or microelectronic packaging technology [J]. J Funct Mater/Gongneng Cailiao, 50(5).

  10. Zhong M, Peng C, Huang F et al (2019) Effects of trace elements on the properties of copper from first-principles calculations[C]//IOP conference series: earth and environmental science. IOP Publ 300(2):022010

    Google Scholar 

  11. Xiaze LIN, Bianying WEN (2022) Influence of interfacial effect on heat conduction behavior of functional composites[J]. Acta Mater Compos Sin 39(4):1498–1510

    Google Scholar 

  12. Dandekar CR, Shin YC (2011) Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics[J]. Compos A Appl Sci Manuf 42(4):355–363

    Article  Google Scholar 

  13. Mehr VY, Toroghinejad MR (2022) Microstructural investigation of an Al–Cu lamellar nanocomposite produced by accumulative roll bonding process under the heat treatment condition: an analytical, experimental, and finite element study[J]. J Market Res 20:1028–1042

    Google Scholar 

  14. Lee WB, Bang KS, Jung SB (2005) Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing[J]. J Alloy Compd 390(1–2):212–219

    Article  CAS  Google Scholar 

  15. You J, Zhao Y, Dong C et al (2022) Microstructural evolution and mechanical properties of the Al–Cu dissimilar joint enhanced by stationary-dynamic shoulder friction stir welding[J]. J Mater Process Technol 300:117402

    Article  CAS  Google Scholar 

  16. Shayanpoor AA, Ashtiani HRR (2022) Microstructural and mechanical investigations of powder reinforced interface layer of hot extruded Al/Cu bimetallic composite rods[J]. J Manuf Process 77:313–328

    Article  Google Scholar 

  17. Zhang X, Zhang L, Zeng L et al (2022) Tensile properties optimization of Al/electroplating-Cu composites fabricated by accumulative roll bonding (ARB)[J]. J Manuf Process 84:713–717

    Article  Google Scholar 

  18. Chen SY, Wu ZW, Liu KX et al (2013) Atomic diffusion behavior in Cu-Al explosive welding process[J]. J Appl Phys 113(4):044901

    Article  Google Scholar 

  19. Mypati O, Kumar PP, Pal SK et al (2022) TEM analysis and molecular dynamics simulation of graphene coated Al-Cu micro joints[J]. Carbon Trends 9:100223

    Article  CAS  Google Scholar 

  20. Mypati O, Pavan Kumar P, Iqbal P et al (2021) Molecular dynamics simulation of atomic diffusion in friction stir spot welded Al to Cu joints[J]. Mech Adv Mater Struct 29(27):6053

    Article  Google Scholar 

  21. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  22. Dandekar CR, Shin YC (2011) Effect of porosity on the interface behavior of an Al2O3–aluminum composite: a molecular dynamics study[J]. Compos Sci Technol 71(3):350–356

    Article  CAS  Google Scholar 

  23. Al-Saawani MA, Al-Negheimish AI, El-Sayed AK et al (2022) Finite element modeling of debonding failures in FRP-strengthened concrete beams using cohesive zone model[J]. Polymers 14(9):1889

    Article  CAS  Google Scholar 

  24. Wciślik W, Pała T (2021) Selected aspects of cohesive zone modeling in fracture mechanics[J]. Metals 11(2):302

    Article  Google Scholar 

  25. Li Q, Dong Z, Ji S et al (2021) Effects of welding parameter on atom-scale interfacial diffusion behavior of Al/Cu dissimilar friction stir welding[J]. Phys Status Solid (B) 258(10):2100123

    Article  CAS  Google Scholar 

  26. Wang SG, Liu CX, Jian ZY (2018) Molecular dynamics simulation of diffusion coefficient of Al-Cu alloy[J]. J Xi’’an Technol Univ 38(6):559–564

    Google Scholar 

  27. Gall K, Horstemeyer MF, Van Schilfgaarde M et al (2000) Atomistic simulations on the tensile debonding of an aluminum–silicon interface[J]. J Mech Phys Solid 48(10):2183–2212

    Article  CAS  Google Scholar 

  28. Thompson AP, Plimpton SJ, Mattson W (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions[J]. J Chem Phys 131(15):154107

    Article  Google Scholar 

  29. Liu XY, Liu CL, Borucki LJ (1999) A new investigation of copper’s role in enhancing Al–Cu interconnect electromigration resistance from an atomistic view[J]. Acta Mater 47(11):3227–3231

    Article  CAS  Google Scholar 

  30. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool[J]. Modell Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  31. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation[J]. Phys Rev B 58(17):11085

    Article  CAS  Google Scholar 

  32. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces[J]. Modell Simul Mater Sci Eng 20(8):085007

    Article  Google Scholar 

  33. Gupta P, Pal S, Yedla N (2016) Molecular dynamics based cohesive zone modeling of Al (metal)–Cu50Zr50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms[J]. Mater Des 105:41–50

    Article  CAS  Google Scholar 

  34. Gupta P, Yedla N (2017) Dislocation and structural studies at metal–metallic glass interface at low temperature[J]. J Mater Eng Perform 26(12):5694–5704

    Article  CAS  Google Scholar 

  35. Koh SJA, Lee HP, Lu C et al (2005) Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects[J]. Phys Rev B 72(8):085414

    Article  Google Scholar 

  36. Jiang S, Li SC (2014) Valence electron structure calculation and interface reaction prediction of Al/Cu system [J]. Trans Mater Heat Treat 35(8):213–218

    CAS  Google Scholar 

  37. Sarkar J (2018) Investigation of mechanical properties and deformation behavior of single-crystal Al–Cu core-shell nanowire generated using non-equilibrium molecular dynamics simulation[J]. J Nanopart Res 20(6):1–7

    Article  Google Scholar 

  38. Zhou Y, Yang W, Hu M et al (2016) The typical manners of dynamic crack propagation along the metal/ceramics interfaces: a molecular dynamics study[J]. Comput Mater Sci 112:27–33

    Article  CAS  Google Scholar 

  39. Ma Q, Song C, Zhou J et al (2021) Dynamic weld evolution during ultrasonic welding of Cu–Al joints[J]. Mater Sci Eng A 823:141724

    Article  CAS  Google Scholar 

  40. Su H, Zhao Q, Chen J et al (2022) Homogenizing the intermetallic compounds distribution in Al/Cu dissimilar friction stir welding joint with the assistance of ultrasonic vibration[J]. Mater Today Commun 31:103643

    Article  CAS  Google Scholar 

  41. Wang J, Zhang RF, Zhou CZ et al (2014) Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces[J]. Int J Plast 53:40–55

    Article  CAS  Google Scholar 

  42. Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Stacking fault energies and slip in nanocrystalline metals[J]. Nat Mater 3(6):399–403

    Article  Google Scholar 

Download references

Acknowledgements

This authors would like to acknowledge financial support by the Major Science and Technology Projects of Yunnan Province (202102AB080008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhou.

Ethics declarations

Conflict of interest

We confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Ethical statement

No human and animal subjects are involved, so the ethical statement is not applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhang, Z., Zhou, X. et al. Mechanical behavior and microstructure evolution of Al/AlCu alloy interface. J Mater Sci 58, 5489–5502 (2023). https://doi.org/10.1007/s10853-023-08200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08200-4

Navigation