Skip to main content
Log in

Effect of annealing temperature on magnetic and mechanical properties of twin-roll strip casting Cu-bearing non-oriented electrical steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The as-cast sheet of Cu-bearing non-oriented electrical steel with a width of 300 mm and a thickness of 2.4 mm was prepared by the twin-roll strip casting process. The effects of nucleation and growth of recrystallized grains at different annealing temperatures on the evolution of the microstructure and texture of annealed sheet were studied. In addition, the magnetic and mechanical properties of the final sheets were analyzed. The results show that the shear band in the cold-rolled sheet can promote the formation of {100} texture at the initial stage of recrystallization, regardless of high or low-temperature annealing. The combination of low-temperature nucleation and subsequent high-temperature growth is more conducive to the formation of strong {100} texture and has higher preparation efficiency than only through low-temperature annealing. It also indirectly indicates that moderate nucleation and preferential growth are important for the formation of strong beneficial texture. Combined with the subsequent aging treatment, the low-temperature nucleation sheet can obtain an excellent match between mechanical properties and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Silveyra JM, Ferrara E, Huber DL, Monson TC (2018) Soft magnetic materials for a sustainable and electrified world. Science 362(6413):1–9. https://doi.org/10.1126/science.aao0195

    Article  CAS  Google Scholar 

  2. Yu L, Luo HW (2020) Effect of partial recrystallization annealing on magnetic properties and mechanical properties of non-oriented silicon steel. Acta Metall Sin 56(3):291–300. https://doi.org/10.11900/0412.1961.2019.00314

    Article  CAS  Google Scholar 

  3. Gerada D, Mebarki A, Brown NL, Gerada C, Cavagnino A, Boglietti A (2013) High-speed electrical machines: technologies, trends, and developments. IEEE Trans Ind Electron 61(6):2946–2959. https://doi.org/10.1109/TIE.2013.2286777

    Article  Google Scholar 

  4. Fang F, Hou DW, Wang ZL, Che SF, Zhang YX, Wang Y, Yuan G (2021) Microstructure characteristics and strengthening behavior of Cu-bearing non-oriented silicon steel: conventional process versus strip casting. Metals 11(11):1801–1815. https://doi.org/10.3390/met11111815

    Article  CAS  Google Scholar 

  5. Zhang B, Liang YF, Han CY, Wang Z, Zhang JF, Zhou GH, Liu BN (2021) High-strength low-iron-loss electrical steel accomplished by Cu-rich nanoprecipitates. Mater Lett 296:917–920. https://doi.org/10.1016/j.matlet.2021.129917

    Article  CAS  Google Scholar 

  6. Zu GQ, Zhang XM, Zhao JW, Cui Y, Wang YQ, Jiang ZY (2015) Analysis of the microstructure, texture and magnetic properties of strip casting 4.5 wt.% Si non-oriented electrical steel. Mater Des 85:455–460. https://doi.org/10.1016/j.matdes.2015.07.007

    Article  CAS  Google Scholar 

  7. Liu HT, Liu ZY, Sun Y, Gao F, Wang GD (2013) Development of λ-fiber recrystallization texture and magnetic property in Fe–6.5 wt% Si thin sheet produced by strip casting and warm rolling method. Mater lett 91:150–153. https://doi.org/10.1016/j.matlet.2012.09.046

    Article  CAS  Google Scholar 

  8. Liu HT, Li HZ, Li HL, Gao F, Liu GH, Luo ZH, Liu ZY (2015) Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel. J Magn Magn Mater 391:65–74. https://doi.org/10.1016/j.jmmm.2015.04.105

    Article  CAS  Google Scholar 

  9. Ge S, Isac M, Guthrie RIL (2012) Progress of strip casting technology for steel; historical developments. ISIJ Int 52(12):2109–2122. https://doi.org/10.2355/isijinternational.52.2109

    Article  CAS  Google Scholar 

  10. Sha YH, Sun C, Zhang F, Patel D, Chen X, Kalidindi SR, Zuo L (2014) Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater 76:106–117. https://doi.org/10.1016/j.actamat.2014.05.020

    Article  CAS  Google Scholar 

  11. Sun MX, Zhang WN, Liu ZY, Wang GD (2017) Direct observations on the crystal structure evolution of nano Cu-precipitates in an extremely low carbon steel. Mater Lett 187:49–52. https://doi.org/10.1016/j.matlet.2016.10.077

    Article  CAS  Google Scholar 

  12. Jiao ZB, Luan JH, Guo W, Poplawsky JD, Liu CT (2016) Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles. Acta Mater 120:216–227. https://doi.org/10.1016/j.actamat.2016.08.066

    Article  CAS  Google Scholar 

  13. Bian XH, Zeng YP, Nan D, Wu M (2014) The effect of copper precipitates on the recrystallization textures and magnetic properties of non-oriented electrical steels. J Alloy Compd 588:108–113. https://doi.org/10.1016/j.jallcom.2013.11.010

    Article  CAS  Google Scholar 

  14. Wu M, Zeng YP (2015) Effect of copper precipitates on the stability of microstructures and magnetic properties of non-oriented electrical steels. J Magn Magn Mater 391:96–100. https://doi.org/10.1016/j.jmmm.2015.04.085

    Article  CAS  Google Scholar 

  15. Zhang YC, Song RB, Wang YJ, Cai CH, Yu P, Zhao ZY, Hu CY (2021) Precipitation evolution, strengthening and toughening mechanisms of Fe–3Si–2Cu (in wt.%) steel during aging process. Mater Sci Eng A 806:863–867. https://doi.org/10.1016/j.msea.2021.140863

    Article  CAS  Google Scholar 

  16. Wang YQ, Zhang M, He Z, Zu GQ, Ji GF, Duan JY, Misra RDK (2017) Effect of copper precipitates on mechanical and magnetic properties of Cu-bearing non-oriented electrical steel processed by twin-roll strip casting. Mater Sci Eng A 703:340–347. https://doi.org/10.1016/j.msea.2017.07.075

    Article  CAS  Google Scholar 

  17. Fang F, Xu YB, Zhang YX, Wang Y, Lu X, Misra RDK, Wang GD (2015) Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels. J Magn Magn Mater 381:433–439. https://doi.org/10.1016/j.jmmm.2015.01.026

    Article  CAS  Google Scholar 

  18. Gowthaman A, Pownsamy V, Tripathi P, Kumar DS, Swaminathan M, Manjini S (2021) Optimization of the final annealing temperature for cold-rolled non-grain oriented (CRNO) electrical steel through Gleeble simulation. Phys Met Metallogr 122:1447–1453. https://doi.org/10.1134/S0031918X2114009X

    Article  CAS  Google Scholar 

  19. Lin GT, Zhao F, Yu X, Zhang ZH, Xie JX (2020) Effect of annealing on microstructure, texture and magnetic properties of Fe-6.5 wt% Si-0.03 wt% Nb alloy. J Magn Magn Mater 504:699–706. https://doi.org/10.1016/j.jmmm.2020.166699

    Article  CAS  Google Scholar 

  20. Alves EMM, Silveira CC, da Cunha MA (2020) Influence of stress relief annealing temperature on the cutting edge microstructure and on the recovery of magnetic properties of grain oriented electrical steel. Mater Charact 166:565–577. https://doi.org/10.1016/j.matchar.2020.110408

    Article  CAS  Google Scholar 

  21. Park JS, Park JT (2016) Effect of stress relief annealing temperature and atmosphere on the microstructure and magnetic properties of non-oriented electrical steels. In: 2016 6th international electric drives production conference (EDPC), IEEE pp 288–292. https://doi.org/10.1109/EDPC.2016.7851344

  22. Xu YB, Jiao HT, Zhang YX, Fang F, Lu X, Wang Y, Cao GM (2017) Effect of pre-annealing prior to cold rolling on the precipitation, microstructure and magnetic properties of strip-cast non-oriented electrical steels. J Mater Sci Technol 33(12):1465–1474. https://doi.org/10.1016/j.jmst.2017.08.002

    Article  CAS  Google Scholar 

  23. Liu HT, Li HL, Wang H, Liu Y, Gao F, An LZ, Wang GD (2016) Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel. J Magn Magn Mater 406:149–158. https://doi.org/10.1016/j.jmmm.2016.01.018

    Article  CAS  Google Scholar 

  24. Liu HT, Li HL, Schneider J, Liu Y, Wang GD (2016) Effects of coiling temperature after hot rolling on microstructure, texture, and magnetic properties of non-oriented electrical steel in strip casting processing route. Steel Res Int 87(10):1256–1263. https://doi.org/10.1002/srin.201500351

    Article  CAS  Google Scholar 

  25. Jiao HT, Xu YB, Xu HJ, Zhang YX, Xiong W, Misra RDK, Cao GM (2018) Influence of hot deformation on texture and magnetic properties of strip cast non-oriented electrical steel. J Magn Magn Mater 462:205–215. https://doi.org/10.1016/j.jmmm.2018.05.015

    Article  CAS  Google Scholar 

  26. Raabe D (2014) Recovery and recrystallization: phenomena, physics, models, simulation. In: Physical metallurgy, pp 2291–397. https://doi.org/10.1016/B978-0-444-53770-6.00023-X

  27. De Dafe SSF, da Costa PS, Cota AB (2011) Influence of thermomechanical processing on shear bands formation and magnetic properties of a 3% Si non-oriented electrical steel. J Magn Magn Mater 323(24):3234–3238. https://doi.org/10.1016/j.jmmm.2011.07.015

    Article  CAS  Google Scholar 

  28. Park JT, Szpunar JA (2003) Evolution of recrystallization texture in non oriented electrical steels. Acta Mater 51:3037–3051. https://doi.org/10.1016/S1359-6454(03)00115-0

    Article  CAS  Google Scholar 

  29. Liu HT, Schneider J, Li HL, Sun Y, Gao F, Lu HH, Song HY, Wang GD (2015) Fabrication of high permeability non-oriented electrical steels by increasing <001> recrystallization texture using compacted strip casting processes. J Magn Magn Mater 374:577–586. https://doi.org/10.1016/j.jmmm.2014.08.052

    Article  CAS  Google Scholar 

  30. Cheng ZY, Liu J, Xiang ZD, Jia J, Volkova O, Wendler M (2021) Effect of Cu addition on microstructure, texture and magnetic properties of 6.5 wt% Si electrical steel. J Magn Magn Mater 519:438–450. https://doi.org/10.1016/j.jmmm.2020.167471

    Article  CAS  Google Scholar 

  31. Lan MF, Zhang YX, Fang F, Lu X, Wang Y, Yuan G, Wang GD (2018) Effect of annealing after strip casting on microstructure, precipitates and texture in non-oriented silicon steel produced by twin-roll strip casting. Mater Charact 142:531–539. https://doi.org/10.1016/j.matchar.2018.06.016

    Article  CAS  Google Scholar 

  32. Misra R, Jia Z, O’Malley R, Jansto SJ (2011) Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: the effect on mechanical properties. Mater Sci Eng A 528(29–30):8772–8780. https://doi.org/10.1016/j.msea.2011.08.047

    Article  CAS  Google Scholar 

  33. Zhang Z (2016) Research development of high strength low alloy (HSLA) steels. Mater China 35:141–150

    CAS  Google Scholar 

  34. Yin S, Chen CY, Yan XC, Feng XH, Jenkins R, O’Reilly P, Liu M (2018) The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit Manuf 22:592–600. https://doi.org/10.1016/j.addma.2018.06.005

    Article  CAS  Google Scholar 

  35. Bai YC, Wang D, Yang YQ, Wang H (2019) Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater Sci Eng A 760:105–117. https://doi.org/10.1016/j.msea.2019.05.115

    Article  CAS  Google Scholar 

  36. Fang F, Che SF, Hou DW, Zhang YX, Wang Y, Zhang WN, Yuan G (2022) Thin-gauge non-oriented silicon steel with balanced magnetic and mechanical properties processed by strip casting. Mater Sci Eng A 831:284–297. https://doi.org/10.1016/j.msea.2021.142284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Nos. 52174355, 51701021, 51974032), the China Postdoctoral Science Foundation funded project (No. 2021M693904 and 2022T150074) and the Science and Technology Development Program of Jilin Province (No. 20200401022GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqing Zu or Xu Ran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zu, G., Liang, J. et al. Effect of annealing temperature on magnetic and mechanical properties of twin-roll strip casting Cu-bearing non-oriented electrical steel. J Mater Sci 58, 1783–1797 (2023). https://doi.org/10.1007/s10853-022-08097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08097-5

Navigation