Skip to main content

Advertisement

Log in

Tuning mechanoluminescent long-afterglow composites toward mechanical energy lighting

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanoluminescence (ML) and long-afterglow (LAG) luminescence are usually studied independently and applied in different fields. SrAl2O4:Eu(II)/Dy(III) (SAOED) is a well-known long-afterglow and elastico-mechanoluminescent material that emits bright green visible light through absorption of photon energy, followed by naturally thermal release or excitation by force. The ML intensity is directly proportional to the magnitude of the applied dynamic force in the elastic range, making it uniquely applicable in a wide field of active visualization of stress/strain sensing. As a LAG material, SAOED is also a commercial photoluminescence (PL) phosphor owing to its high initial brightness and ultralong luminescence duration. Considering the ML and LAG properties and making better applications, the influence of dopants on both characteristics should be studied. In this study, we investigated the concentration effect of Eu (II) and Dy (III) co-doping on the PL, ML, and LAG properties of SAO. A maximum twofold ML brightness enhancement was achieved, and a suitable stress-induced afterglow and stress-free afterglow features were observed through Eu(II) and Dy(III) co-doping. Taking advantage of these properties, we demonstrate the application of Dy- and Eu-co-doped strontium aluminate in environmental–mechanical energy conversion. Owing to its mechanically excited luminescence properties, it can reduce electricity consumption and can also serve as an environmental motion warning in traffic signing, sports scene, and other related fields. The results enriched the application scenarios of SAOED composites as a multiluminescent smart material.

Graphical Abstract

We conduct a systematic analysis to investigate and confirm that the appropriate co-doping strategies to simultaneously obtain good mechanoluminescence and long-afterglow performance of strontium aluminate phosphors and their composites, demonstrate their applications in the environmental auxiliary lighting and sport-force indicator, which results can enrich the application scenarios of mechanoluminescent long-afterglow composites as a smart and energy-saving material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Zhang Y, Liu H, Pan C, Wang ZL (2015) Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv Mater 27(14):2324–2331. https://doi.org/10.1002/adma.201405826

    Article  CAS  Google Scholar 

  2. Ning J, Zheng Y, Ren Y, Li L, Shi X, Peng D, Yang Y (2022) MgF2:Mn2+: novel material with mechanically-induced luminescence. Sci Bull 67(7):707–715

    Article  CAS  Google Scholar 

  3. Jia Z, Yuan C, Liu Y, Wang X-J, Sun P, Wang L, Jiang H, Jiang J (2020) Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci Appl 9(1):86. https://doi.org/10.1038/s41377-020-0326-8

    Article  CAS  Google Scholar 

  4. Yao Q, Hu P, Sun P, Liu M, Dong R, Chao K, Liu Y, Jiang J, Jiang H (2020) YAG:Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting. Adv Mater 32(19):1907888. https://doi.org/10.1002/adma.201907888

    Article  CAS  Google Scholar 

  5. Wei XY, Wang X, Kuang SY, Su L, Li HY, Wang Y, Pan C, Wang ZL, Zhu G (2016) Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing. Adv Mater 28(31):6656–6664. https://doi.org/10.1002/adma.201600604

    Article  CAS  Google Scholar 

  6. Wang X, Peng D, Huang B, Pan C, Wang ZL (2019) Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications. Nano Energy 55:389–400

    Article  CAS  Google Scholar 

  7. Du Y, Jiang Y, Sun T, Zhao J, Huang B, Peng D, Wang F (2019) Mechanically excited multicolor luminescence in lanthanide ions. Adv Mater 31(7):1807062. https://doi.org/10.1002/adma.201807062

    Article  CAS  Google Scholar 

  8. Wang C, Ma R, Peng D, Liu X, Li J, Jin B, Shan A, Fu Y, Dong L, Gao W (2021) Mechanoluminescent hybrids from a natural resource for energy-related applications. InfoMat 3(11):1272–1284. https://doi.org/10.1002/inf2.12250

    Article  CAS  Google Scholar 

  9. Zhuang Y, Xie RJ (2021) Mechanoluminescence rebrightening the prospects of stress sensing: a review. Adv Mater 33(50):2005925. https://doi.org/10.1002/adma.202005925

    Article  CAS  Google Scholar 

  10. Wang C, Peng D, Pan C (2020) Mechanoluminescence materials for advanced artificial skin. Sci Bull 65(14):1147–1149

    Article  CAS  Google Scholar 

  11. Peng D, Wang C, Ma R, Mao S, Qu S, Ren Z, Golovynskyi S, Pan C (2021) Mechanoluminescent materials for athletic analytics in sports science. Sci Bull 66(3):206–209. https://doi.org/10.1016/j.scib.2020.09.029

    Article  Google Scholar 

  12. Ma R, Wang C, Yan W, Sun M, Zhao J, Zheng Y, Li X, Huang L, Chen B, Wang F, Huang B, Peng D (2022) Interface synergistic effects induced multi-mode luminescence. Nano Res 15(5):4457–4465. https://doi.org/10.1007/s12274-022-4115-y

    Article  CAS  Google Scholar 

  13. Zhang J-C, Wang X, Marriott G, Xu CN (2019) Trap-controlled mechanoluminescent materials. Prog Mater Sci 103:678–742. https://doi.org/10.1016/j.pmatsci.2019.02.001

    Article  CAS  Google Scholar 

  14. Li L, Chen Y-T, Hsiao Y-C, Lai Y-C (2022) Mycena chlorophos-inspired autoluminescent triboelectric fiber for wearable energy harvesting, self-powered sensing, and as human-device interfaces. Nano Energy 94:106944. https://doi.org/10.1016/j.nanoen.2022.106944

    Article  CAS  Google Scholar 

  15. Moon Jeong S, Song S, Lee S-K, Choi B (2013) Mechanically driven light-generator with high durability. Appl Phys Lett 102(5):51110. https://doi.org/10.1063/1.4791689

    Article  CAS  Google Scholar 

  16. Jeong SM, Song S, Joo K-I, Kim J, Hwang S-H, Jeong J, Kim H (2014) Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ Sci 7(10):3338–3346

    Article  CAS  Google Scholar 

  17. Zhao XJ, Kuang SY, Wang ZL, Zhu G (2020) Electricity−free electroluminescence excited by droplet impact driven triboelectric field on solid− liquid interface. Nano Energy 75:104823. https://doi.org/10.1016/j.nanoen.2020.104823

    Article  CAS  Google Scholar 

  18. Wang C, Yu Y, Yuan Y, Ren C, Liao Q, Wang J, Chai Z, Li Q, Li Z (2020) Heartbeat-sensing mechanoluminescent device based on a quantitative relationship between pressure and emissive intensity. Matter 2(1):181–193. https://doi.org/10.1016/j.matt.2019.10.002

    Article  Google Scholar 

  19. Timilsina S, Kim JS, Kim J, Kim G-W (2016) Review of state-of-the-art sensor applications using mechanoluminescence microparticles. Int J Precis Eng Manuf 17(9):1237–1247. https://doi.org/10.1007/s12541-016-0149-y

    Article  Google Scholar 

  20. Chen B, Peng DF, Lu P, Sheng ZP, Yan KY, Fu Y (2021) Evaluation of vibration mode shape using a mechanoluminescent sensor. Appl Phys Lett 119(9):94102. https://doi.org/10.1063/5.0063514

    Article  CAS  Google Scholar 

  21. Hong G (2020) Seeing the sound. Science 369(6504):638. https://doi.org/10.1126/science.abd3636

    Article  CAS  Google Scholar 

  22. Hasegawa Y, Tateno S, Yamamoto M, Nakanishi T, Kitagawa Y, Seki T, Ito H, Fushimi K (2017) Effective photo-and triboluminescent europium (III) coordination polymers with rigid triangular spacer ligands. Chem Eur J 23(11):2666–2672. https://doi.org/10.1002/chem.201605054

    Article  CAS  Google Scholar 

  23. Delgado T, Afshani J, Hagemann H (2019) Spectroscopic study of a single crystal of SrAl2O4:Eu2+:Dy3+. J Phys Chem C 123(14):8607–8613. https://doi.org/10.1021/acs.jpcc.8b12568

    Article  CAS  Google Scholar 

  24. Bünzli J-CG, Wong K-L (2018) Lanthanide mechanoluminescence. J Rare Earths 36(1):1–41

    Article  Google Scholar 

  25. Peng D, Chen B, Wang F (2015) Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 80(8):1209. https://doi.org/10.1002/cplu.201500185

    Article  CAS  Google Scholar 

  26. Jha P, Chandra BP (2014) Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 29(8):977–993. https://doi.org/10.1002/bio.2647

    Article  CAS  Google Scholar 

  27. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y (1996) A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J Electrochem Soc 143(8):2670. https://doi.org/10.1149/1.1837067/meta

    Article  CAS  Google Scholar 

  28. Xu CN, Watanabe T, Akiyama M, Zheng X-G (1999) Direct view of stress distribution in solid by mechanoluminescence. Appl Phys Lett 74(17):2414–2416. https://doi.org/10.1063/1.123865

    Article  CAS  Google Scholar 

  29. Mao Q, Chen Z, Ji Z, Xi J (2017) UV-assisted mechanoluminescence properties of SrAl2O4:(Eu, Dy) for impact sensing. J Mater Sci 52(14):8370–8376. https://doi.org/10.1007/s10853-017-1053-2

    Article  CAS  Google Scholar 

  30. Kim JS, Kwon Y-N, Shin N, Sohn K-S (2005) Visualization of fractures in alumina ceramics by mechanoluminescence. Acta Mater 53(16):4337–4343. https://doi.org/10.1016/j.actamat.2005.05.032

    Article  CAS  Google Scholar 

  31. Kim JS, Kwon Y-N, Shin N, Sohn K-S (2007) Mechanoluminescent SrAl2O4: Eu, Dy Phosphor for use in visualization of quasidynamic crack propagation. Appl Phys Lett 90(24):241916. https://doi.org/10.1063/1.2748100

    Article  CAS  Google Scholar 

  32. Timilsina S, Lee KH, Kwon YN, Kim JS (2015) Optical evaluation of in situ crack propagation by using mechanoluminescence of SrAl2O4: Eu2+, Dy3+. J Am Ceram Soc 98(7):2197–2204. https://doi.org/10.1111/jace.13566

    Article  CAS  Google Scholar 

  33. Xu CN, Liu Y, Akiyama M, Nonaka K, Zheng X-G (2000) Stress Imaging with Mechanoluminescence. In Advanced Photonic Sensors: Technology and Applications; International Society for Optics and Photonics 4220 344–349.

  34. Terasaki N, Xu C-N, Li C, Zhang L, Li C, Ono D, Tsubai M, Adachi Y, Imai Y, Ueno N (2012) Visualization of Active Crack on Bridge in Use by Mechanoluminescent Sensor. In Health Monitoring of Structural and Biological Systems 2012.SPIE; International Society for Optics and Photonics; Vol. 8348, pp 652–657.

  35. Fujio Y, Xu C-N, Terasawa Y, Sakata Y, Yamabe J, Ueno N, Terasaki N, Yoshida A, Watanabe S, Murakami Y (2016) Sheet sensor using SrAl2O4: Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel. Int J Hydrogen Energy 41(2):1333–1340. https://doi.org/10.1016/j.ijhydene.2015.10.073

    Article  CAS  Google Scholar 

  36. Yoshida A, Liu L, Tu D, Kainuma S, Xu CN (2017) Mechanoluminescent testing as an efficient inspection technique for the management of infrastructures. J Disaster Res 12(3):506–514. https://doi.org/10.20965/jdr.2017.p0506

    Article  Google Scholar 

  37. Azad AI, Rahimi MR, Yun GJ (2016) Quantitative full-field strain measurements by SAOED (SrAl2O4: Eu2+, Dy3+) mechanoluminescent materials. Smart Mater Struct 25(9):95032. https://doi.org/10.1088/0964-1726/25/9/095032/meta

    Article  Google Scholar 

  38. Lin Y-H, Dang Z, Deng Y, Nan CW (2003) Studies on mechanoluminescence from SrAl2O4: Eu Dy Phosphor. Mater Chem Phys 80(1):20–22. https://doi.org/10.1016/S0254-0584(02)00478-9

    Article  CAS  Google Scholar 

  39. Sohn K, Seo SY, Kwon YN, Park HD (2002) Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu, Dy, Nd). J Am Ceram Soc 85(3):712–714. https://doi.org/10.1111/j.1151-2916.2002.tb00158.x

    Article  CAS  Google Scholar 

  40. Tu D, Xu CN, Saito R, Liu L, Yoshida A (2017) Influence of H3BO3 addition on mechanoluminescence property of SrAl2O4: Eu2+. J Ceram Soc Japan 125(8):648–651. https://doi.org/10.2109/jcersj2.17090

    Article  CAS  Google Scholar 

  41. Xu, Chao-Nan DT Mechanoluminescent Material , Coating Containing Mechanoluminescent Material , Mechanoluminescent Substance and Method for Producing Mechanoluminescent Material. 0345381.

  42. Liu L, Xu C, Yoshida A, Tu D, Ueno N, Kainuma S (2019) Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis. Adv Mater Technol 4(1):1800336. https://doi.org/10.1002/admt.201800336

    Article  CAS  Google Scholar 

  43. Jiang Y, Wang F, Zhou H, Fan Z, Wu C, Zhang J, Liu B, Wang Z (2018) Optimization of strontium aluminate-based mechanoluminescence materials for occlusal examination of artificial tooth. Mater Sci Eng C 92:374–380. https://doi.org/10.1016/j.msec.2018.06.056

    Article  CAS  Google Scholar 

  44. Yang Y, Zheng S, Fu X, Zhang H (2018) Remote and portable mechanoluminescence sensing system based on a SrAl2O4: Eu, Dy film and its potential application to monitoring the safety of gas pipelines. Optik (Stuttg) 158:602–609. https://doi.org/10.1016/j.ijleo.2017.12.151

    Article  CAS  Google Scholar 

  45. Bao L, Xu X, Zuo Y, Zhang J, Liu F, Yang Y, Xu F, Sun X, Peng H (2019) Piezoluminescent devices by designing array structures. Sci Bull 64(3):151–157

    Article  CAS  Google Scholar 

  46. Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo M-H, Garcia A, Le Mercier T (2005) Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-Doped SrAl2O4 with codopants Dy3+ and B3+. Chem Mater 17(15):3904–3912. https://doi.org/10.1021/cm050763r

    Article  CAS  Google Scholar 

  47. Rahimi MR, Yun GJ, Doll GL, Choi J-S (2013) Effects of persistent luminescence decay on mechanoluminescence phenomena of SrAl2O4: Eu2+, Dy3+ materials. Opt Lett 38(20):4134–4137. https://doi.org/10.1364/OL.38.004134

    Article  CAS  Google Scholar 

  48. Sharma R, Sharma U (2015) Influence of fluxing agent on the luminescence properties of SrAl2O4: Eu2+ nanophosphors. J Alloys Compd 649:440–446. https://doi.org/10.1016/j.jallcom.2015.07.170

    Article  CAS  Google Scholar 

  49. Ma R, Mao S, Wang C, Shao Y, Wang Z, Wang Y, Qu S, Peng D (2020) Luminescence in manganese (II)-Doped SrZn2S2O crystals from multiple energy conversion. Front Chem 8:752. https://doi.org/10.3389/fchem.2020.00752

    Article  CAS  Google Scholar 

  50. Yamada H, Fu X, Xu CN (2007) Enhancement of adhesion and triboluminescent properties of SrAl2O4: Eu2+ films fabricated by RF magnetron sputtering and postannealing techniques. J Electrochem Soc 154(11):J348. https://doi.org/10.1149/1.2772194/meta

    Article  CAS  Google Scholar 

  51. Liu Y, Xu C-N (2004) Electroluminescent ceramics excited by low electrical field. Appl Phys Lett 84(24):5016–5018. https://doi.org/10.1063/1.1763223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Natural Science Foundation of China (Grant Nos. 61875136, 11972235, and 52002246), the Guangdong Provincial Science Fund for Distinguished Young Scholars (2022B1515020054), Fundamental Research Project of Guangdong Province (2020A1515011315), Guangdong Province Philosophy and Social Science Planning Project (GD20XTY11), Shenzhen Fundamental Research Project (JCYJ20190808170601664), Science and Technology Innovation Project of Shenzhen Excellent Talents (RCBS20200714114919006), and Scientific Research Foundation as Phase II construction of high-level University for the Youth Scholars of Shenzhen University 2019 (000002110223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Fu or Dengfeng Peng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 356 KB)

Supplementary file2 (MP4 962 KB)

Supplementary file3 (MP4 207 KB)

Supplementary file4 (MP4 293 KB)

Supplementary file5 (MP4 458 KB)

Supplementary file6 (MP4 489 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Chen, B., Qu, S. et al. Tuning mechanoluminescent long-afterglow composites toward mechanical energy lighting. J Mater Sci 57, 21378–21391 (2022). https://doi.org/10.1007/s10853-022-07965-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07965-4

Navigation