Skip to main content
Log in

Experimental study of doped zinc aluminate nanoparticles by bottom-up approach for microstrip patch antenna applications

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc aluminate is a gahnite material that has prospective uses in optical coatings, photocatalytic activity, sensors, displays, microwave applications, and other areas. This work reports the preparation of Zn(1−x)CaxAl2O4 (at x = 0.0 and x = 0.5) nanoparticles by the bottom-up approach. X-ray diffraction analyses demonstrate the polycrystalline characteristic of spinel structure of ZnAl2O4 with an increase in crystallite size from 8.8 to 9.5 nm corresponding to the samples ZAC0.0 and ZAC0.5 due to calcium doping. Fourier transforms infrared spectroscopy investigations confirm the existence of the characteristic phase of zinc aluminate. Transmission electron microscopy micrographs evidence the preparation of spherical grains with their mean diameter of 17 nm and 15 nm for the samples ZAC0.0 and ZAC0.5, respectively. The samples ZAC0.0 and ZAC0.5 have d-spacing values of 0.28 nm and 0.46 nm, respectively, as determined by HRTEM results, whereas the selected area electron diffraction patterns indicate the polycrystalline phases in both samples. The sample ZAC0.5 shows an increased dielectric permittivity and low dielectric loss and ac conductivity compared to ZAC0.0, as examined by the LCR metre. Finally, two prototype microstrip patch antennas were constructed using the prepared samples and tested. Interestingly, the antenna based on ZAC0.5 sample endorsed better performance with a return loss of − 32.38 dB at the resonant frequency of 6.7 GHz and a bandwidth of 760 MHz.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Khan WM, Gulhane SM (2015) Related review on microstrip patch antennas. Int J Ind Electron Electr Eng 3(1):9–15

    CAS  Google Scholar 

  2. Singh V, Bansal P, Singhal PK (2018) Microstrip line antenna fabrication material. Int J Eng Techno 7:340–344

    Article  Google Scholar 

  3. Liu L, Wang L, Jialun Du, Feng Z, Li Li, Gong Y, Haitao Wu (2021) Effects of (Mg1/3Sb2/3)4+ substitutions on the sintering behaviors and microwave dielectric properties of Li2Mg4Zr1−x(Mg1/3Sb2/3)xO7 ceramics. J Alloy Compd 865:158942. https://doi.org/10.1016/j.jallcom.2021.158942

    Article  CAS  Google Scholar 

  4. Li L, Wang Y, Xia W, He X, Zhang P (2012) Effects of Zn/Mg ratio on the microstructure and microwave dielectric properties of (Zn1−xMgx)2SiO4 ceramics. J Electron Mater 41(4):684–688

    Article  CAS  Google Scholar 

  5. Ding M, Wei Z, Li K, Xiaojuan W, Shi J, Huang S (2020) Influence of Cr and Mn co-doping on the microstructure and optical properties of spinel structured Zn0.95-xCr0.05MnxAl2O4 nanoparticles. J Ceram Soc Jpn 128(11):927–935

    Article  CAS  Google Scholar 

  6. Haung S-P, Wei Z-Q, Wu X-J, Shi J-W (2020) Optical properties of Cr doped ZnAl2O4 nanoparticles with Spinel structure synthesized by hydrothermal method. Mater Res Exp 7(1):015025. https://doi.org/10.1088/2053-1591/ab6125

    Article  CAS  Google Scholar 

  7. Hussain T, Junaid M, Atiq S, Abbas SK, Ramay SM, Alrayes BF, Naseem S (2017) Tunable dielectric behaviour and energy bandgap range of ZnAl2O4 ceramics mediated by Mg substitution. J Alloy Compd 724:940–950

    Article  CAS  Google Scholar 

  8. Jia-Min Wu, Wen-Zhong Lu, Lei W, Wang X-C (2011) Preparation of ZnAl2O4-based microwave dielectric ceramics and GPS antenna by aqueous gelcasting. Mater Res Bull 46(9):1485–1489

    Article  Google Scholar 

  9. Yih-Chien C, Shi-Li Y, Ren-Jie T, Kuei-Chien C (2009) Investigation of the microwave dielectric properties of Ca1−xMgxLa4Ti5O17 ceramics for application in coplanar patch antenna. J Alloy Compd 486(1–2):410–414

    Article  Google Scholar 

  10. Wang X, Lei W, Wenzhong Lu (2009) Novel ZnAl2O4-based microwave dielectric ceramics with machinable property and its application for GPS antenna. Ferroelectrics 388(1):80–87

    Article  CAS  Google Scholar 

  11. Abhilash P, Roshni SB, Mohanan P, Surendran KP (2018) A facile development of homemade substrate using ‘quench free’ glass-ceramic composite and printing microstrip patch antenna on it. Mater Des 137:38–46

    Article  CAS  Google Scholar 

  12. Liao Q, Li L, Zhang P, Ding X, Ren X, Zhang W (2011) A microwave dielectric material for microstrip patch antenna substrate. J Mater Res 26(19):2503–2510

    Article  CAS  Google Scholar 

  13. Wang D, Zhang S, Wang G, Vardaxoglou Y, Whittow W, Cadman D, Zhou D, Song K, Reaney IM (2020) Cold sintered CaTiO3-K2MoO4 microwave dielectric ceramics for integrated microstrip patch antennas. Appl Mater Today 18:100519. https://doi.org/10.1016/j.apmt.2019.100519

    Article  Google Scholar 

  14. Liu B, Sha K, Jia YQ, Huang YH, Chao HC, Li L, Wang DW, Zhou D, Song K X (2021) High quality factor cold sintered LiF ceramics for microstrip patch antenna applications. J Eur Ceram Soc 41:4835–4840

    Article  CAS  Google Scholar 

  15. Huang S, Wei Z, Xiaojuan W, Shi J (2020) Optical properties and theoretical study of Mn doped ZnAl2O4 nanoparticles with spinel structure. J Alloy Compd 825:154004. https://doi.org/10.1016/j.jallcom.2020

    Article  CAS  Google Scholar 

  16. Cornu L, Duttine M, Gaudon M, Jubera V, V. (2014) Luminescence switch of Mn-Doped ZnAl2O4 powder with temperature. J. Mater. Chem. C 2:9512–9522

    Article  CAS  Google Scholar 

  17. Dubey RS, Jadkar SR, Bhorde AB (2021) Synthesis and characterization of various doped TiO2 nanocrystals for dye-sensitized solar cells. ACS Omega 6:3470–3482

    Article  CAS  Google Scholar 

  18. Dubey RS, Singh S (2017) Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results Phys. https://doi.org/10.1016/j.rinp.2017.03.014

    Article  Google Scholar 

  19. Raba-Paez AM, Joao OD, Malafatti CA, Parra-Vargas EC, Paris MR-J (2020) Effect of tungsten doping on the structural, morphological and bactericidal properties of nanostructured CuO. PLoS ONE 15(9):e0239868. https://doi.org/10.1371/journal.pone.0239868

    Article  CAS  Google Scholar 

  20. Sahu M, Wu B, Zhu L, Jacobson C, Wang W-N, Jones K, Goyal Y, Tang YJ, Biswas P (2011) Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO2nanoparticles. Nanotechnology 22(41):415704

    Article  Google Scholar 

  21. Zhang D, Zhu B, Ren S, Wang Q, Wang Q, Li S, Zhang B, Wang W (2021) The white light caused by defects and complex cation distribution in ZnAl2−xFexO4 magnetic nanocrystals. Mater Res Exp 8:025902

    Article  CAS  Google Scholar 

  22. Gurugubelli TR, Babu B, Yoo K (2021) Structural, optical, and magnetic properties of cobalt-doped ZnAl2O4 nanosheets prepared by hydrothermal synthesis. Energies 14:2869. https://doi.org/10.3390/en14102869

    Article  CAS  Google Scholar 

  23. Huízar-Padilla E, Guillén-Bonilla H, Guillén-Bonilla A, Verónica-ría Rodríguez-Betancourtt A, Sánchez-Martínez JT, Guillen-Bonilla LG-O, Reyes-Gómez J (2021) Synthesis of ZnAl 2O4 and evaluation of the response in propane atmospheres of pellets and thick films manufactured with powders of the oxide. Sensors 21:2362. https://doi.org/10.3390/s21072362

    Article  CAS  Google Scholar 

  24. Han Z, Xie R, Song Y, Fan G, Yang L, Li F (2019) Efficient and stable platinum nanocatalysts supported over Ca-doped ZnAl2O4 spinels for base-free selective oxidation of glycerol to glyceric acid. Mol Catal 477:110559

    Article  Google Scholar 

  25. Murugesan C, Chandrasekaran G (2015) Enhanced electrical and magnetic properties of annealed magnesium ferrite nanoparticles. J Supercond Nov Magn 28(12):3607–3615

    Article  CAS  Google Scholar 

  26. Bhongale SR, Ingavale HR, Shinde TJ, Vasambekar PN (2017) Performance of a wideband cadmium ferrite microstrip patch antenna in the X-band region. J Electron Mater. https://doi.org/10.1007/s11664-017-5807-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Dubey.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didde, S., Dubey, R.S., Panda, S.K. et al. Experimental study of doped zinc aluminate nanoparticles by bottom-up approach for microstrip patch antenna applications. J Mater Sci 57, 21069–21079 (2022). https://doi.org/10.1007/s10853-022-07929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07929-8

Navigation