Skip to main content
Log in

Annealing temperature effects on BiFeO3 nanoparticles towards photodegradation of Eosin B dye

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

BiFeO3 is the model multiferroic material widely considered as nanoparticles for its potential photocatalytic activity. In this work, we study the influence of annealing temperature on the structural, morphological and optical properties of BiFeO3 nanoparticles prepared by a facile chemical route and, the resulting photodegradation of Eosin B dye. When annealing temperature as low as 600 °C is used, some parasitic phases such as Bi2Fe4O9 appear in addition to the BiFeO3 phase. At the same time, the energy of the absorption onset and band gap shifts down and the photocatalytic activity toward Eosin B dye significantly increases by ∼27% when UV light is used while only a small if any, enhancement is observed in case of sunlight illumination. This photocatalytic enhancement could be therefore essentially attributed to the presence of secondary parasitic phases that could also explain previous reported observations. Furthermore, annealing at 500 °C to obtain pure parasitic-phase-free BiFeO3 nanopowder reveals excellent photodegradation of Eosin B reaching 95% efficiency after 40 min under sunlight illumination with good photostability after three consecutive degradation cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ghosh S, Kouame NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert PH, Remita H (2015) Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater 14:505–511. https://doi.org/10.1038/nmat4220

    Article  CAS  Google Scholar 

  2. Chen S, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2:1–17. https://doi.org/10.1038/natrevmats.2017.50

    Article  CAS  Google Scholar 

  3. Liu Y-Y, Zhang H-P, Zhu B, Zhang H-W, Fan L-D, Chai X-Y, Zhang Q-L, Liu J-H, He C-X (2018) C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochim Acta 283:221–227. https://doi.org/10.1016/j.electacta.2018.06.137

    Article  CAS  Google Scholar 

  4. Bera S, Ghosh S, Shyamal S, Bhattacharya C, Basu RN (2019) Photocatalytic hydrogen generation using gold decorated BiFeO3 heterostructures as an efficient catalyst under visible light irradiation. Sol Energy Mater Sol Cells 194:195–206. https://doi.org/10.1016/j.solmat.2019.01.042

    Article  CAS  Google Scholar 

  5. Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J, Duan C (2019) Recent progress in two-dimensional ferroelectric materials. Adv Electron Mater 6:1900818–1900847. https://doi.org/10.1002/aelm.201900818

    Article  CAS  Google Scholar 

  6. McBean CL, Liu H, Scofield ME, Li L, Wang L, Bernstein A, Wong SS (2017) Generalizable, electroless, template-assisted synthesis and electrocatalytic mechanistic understanding of perovskite LaNiO3 nanorods as viable, supportless oxygen evolution reaction catalysts in alkaline media. ACS Appl Mater Interfaces 9:24634–24648. https://doi.org/10.1021/acsami.7b06855

    Article  CAS  Google Scholar 

  7. Jamil A, Kalkur TS, Cramer N (2007) Tunable ferroelectric capacitor-based voltage-controlled oscillator. IEEE Trans Ultrason Ferr Freq Control 54:222–226. https://doi.org/10.1109/TUFFC.2007.237

    Article  Google Scholar 

  8. Liao L, Fan HJ, Yan B, Zhang Z, Chen LL, Li BS, Xing GZ, Shen ZX, Wu T, Sun XW, Wang J, Yu T (2009) Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. ACS Nano 3:700–706

    Article  CAS  Google Scholar 

  9. Garcia V, Bibes M (2012) Inside story of ferroelectric memories. Nature 483:279–280

    Article  CAS  Google Scholar 

  10. Zhao Y, Hang Y, Zhang Y, Wang Z, Yao Y, He X, Zhang C, Zhang D (2017) Strontium-doped perovskite oxide La1-xSrxMnO3 (x = 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O2 batteries. Electrochim Acta 232:296–302. https://doi.org/10.1016/j.electacta.2017.02.155

    Article  CAS  Google Scholar 

  11. Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong S-W (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:63–66

    Article  CAS  Google Scholar 

  12. Paillard C, Bai X, Infante IC, Guennou M, Geneste G, Alexe M, Kreisel J, Dkhil B (2016) Photovoltaics with ferroelectrics: current status and beyond. Adv Mater 28:5153–5168. https://doi.org/10.1002/adma.201505215

    Article  CAS  Google Scholar 

  13. Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19:2889–2892. https://doi.org/10.1002/adma.200602377

    Article  CAS  Google Scholar 

  14. Zhang Y, Schultz AM, Salvador PA, Rohrer GS (2011) Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J Mater Chem 21:4168–4174. https://doi.org/10.1039/c0jm04313c

    Article  CAS  Google Scholar 

  15. Deng J, Banerjee S, Mohapatra SK, Smith YR, Misra M (2011) Bismuth iron oxide nanoparticles as photocatalyst for solar hydrogen generation from water. J Fundam Renew Energy Appl 1:1–10. https://doi.org/10.4303/jfrea/R101204

    Article  Google Scholar 

  16. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  CAS  Google Scholar 

  17. Allibe J, Fusil S, Bouzehouane K, Daumont C, Sando D, Jacquet E, Deranlot C, Bibes M, Barthelemy A (2012) Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett 12:1141–1145. https://doi.org/10.1021/nl202537y

    Article  CAS  Google Scholar 

  18. Wang H, Liu ZR, Yoong HY, Paudel TR, Xiao JX, Guo R, Lin WN, Yang P, Wang J, Chow GM, Venkatesan T, Tsymbal EY, Tian H, Chen JS (2018) Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat Commun 9:1–8. https://doi.org/10.1038/s41467-018-05662-y

    Article  CAS  Google Scholar 

  19. Liu Y-L, Wu JM (2019) Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy 56:74–81. https://doi.org/10.1016/j.nanoen.2018.11.028

    Article  CAS  Google Scholar 

  20. Xian T, Yang H, Dai JF, Wei ZQ, Ma JY, Feng WJ (2011) Photocatalytic properties of BiFeO3 nanoparticles with different sizes. Mater Lett 65:1573–1575. https://doi.org/10.1016/j.matlet.2011.02.080

    Article  CAS  Google Scholar 

  21. Huang G, Zhang G, Gao Z, Cao J, Li D, Yun H, Zeng T (2019) Enhanced visible-light-driven photocatalytic activity of BiFeO3 via electric-field control of spontaneous polarization. J Alloy Compd 783:943–951. https://doi.org/10.1016/j.jallcom.2019.01.017

    Article  CAS  Google Scholar 

  22. Li S, Lin Y-H, Zhang B-P, Wang Y, Nan C-W (2010) Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J Phys Chem C 114:2903–2908

    Article  CAS  Google Scholar 

  23. Li J, Wang Y, Ling H, Qiu Y, Lou J, Hou X, Bag SP, Wang J, Wu H, Chai G (2019) Significant enhancement of the visible light photocatalytic properties in 3D BiFeO3/Graphene composites. Nanomaterials 9:65–76. https://doi.org/10.3390/nano9010065

    Article  CAS  Google Scholar 

  24. Maleki H (2019) Characterization and photocatalytic activity of Y-doped BiFeO3 ceramics prepared by solid-state reaction method. Adv Powder Technol 30:2832–2840. https://doi.org/10.1016/j.apt.2019.08.031

    Article  CAS  Google Scholar 

  25. Umar M, Mahmood N, Awan SU, Fatima S, Mahmood A, Rizwan S (2019) Rationally designed La and Se co-doped bismuth ferrites with controlled bandgap for visible light photocatalysis. RSC Adv 9:17148–17156. https://doi.org/10.1039/c9ră4f

    Article  CAS  Google Scholar 

  26. Lin Z, Cai W, Jiang W, Fu C, Li C, Song Y (2013) Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol-gel method. Ceram Int 39:8729–8736. https://doi.org/10.1016/j.ceramint.2013.04.058

    Article  CAS  Google Scholar 

  27. Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst B 46:698–702

    Article  Google Scholar 

  28. BuccI JD, Roberston BK, James WJ (1972) The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO3. J Appl Cryst 5:187–191

    Article  CAS  Google Scholar 

  29. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485. https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  30. Singh MK, Jang HM, Ryu S, Jo M-H (2006) Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl Phys Lett 88:042907–042910. https://doi.org/10.1063/1.2168038

    Article  CAS  Google Scholar 

  31. Haumont R, Kreisel J, Bouvier P, Hippert F (2006) Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Phy Rev B 73:132101–132104. https://doi.org/10.1103/PhysRevB.73.132101

    Article  CAS  Google Scholar 

  32. Valant M, Axelsson AK, Alford N (2007) Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater 19:5431–5436

    Article  CAS  Google Scholar 

  33. Fukumura H, Matsui S, Harima H, Takahashi T, Itoh T, Kisoda K, Tamada M, Noguchi Y, Miyayama M (2007) Observation of phonons in multiferroic BiFeO3 single crystals by Raman scattering. J Phys Condens Matter 19:365224–365230. https://doi.org/10.1088/0953-8984/19/36/365224

    Article  CAS  Google Scholar 

  34. Chen P, Xu X, Koenigsmann C, Santulli AC, Wong SS, Musfeldt JL (2010) Size-dependent infrared phonon modes and ferroelectric phase transition in BiFeO3 nanoparticles. Nano Lett 10:4526–4532. https://doi.org/10.1021/nl102470f

    Article  CAS  Google Scholar 

  35. Ramachandran B, Rao MSR (2012) Chemical pressure effect on optical properties in multiferroic bulk BiFeO3. J Appl Phys 112:073516–073521. https://doi.org/10.1063/1.4757589

    Article  CAS  Google Scholar 

  36. Shariq M, Kaur D, Chandel VS, Siddiqui MA (2013) Investigation on multiferroic properties of BiFeO3 ceramics. Mater Sci-Pol 31:471–475. https://doi.org/10.2478/s13536-013-01282

    Article  CAS  Google Scholar 

  37. Borisevich AY, Chang HJ, Huijben M, Oxley MP, Okamoto S, Niranjan MK, Burton JD, Tsymbal EY, Chu YH, Yu P, Ramesh R, Kalinin SV, Pennycook SJ (2010) Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett 105:087204–087207. https://doi.org/10.1103/physrevlett.105.087204

    Article  CAS  Google Scholar 

  38. Mocherla PSV, Karthik C, Ubic R, Rao MSR, Sudakar C (2013) Tunable bandgap in BiFeO3 nanoparticles: the role of microstrain and oxygen defects. Appl Phys Lett 103:022910–022915. https://doi.org/10.1063/1.4813539

    Article  CAS  Google Scholar 

  39. Ntsendwana B, Sampath S, Mamba BB, Arotiba OA (2013) Photoelectrochemical oxidation of p-nitrophenol on an expanded graphite-TiO2 electrode. Photochem Photobiol Sci 12:1091–1102. https://doi.org/10.1039/c3pp25398h

    Article  CAS  Google Scholar 

  40. Vadivel S, Maruthamani D, Paul B, Dhar SS, Habibi-Yangjeh A, Balachandran S, Saravanakumar B, Selvakumar A, Selvam K (2016) Biomolecule-assisted solvothermal synthesis of Cu2SnS3 flowers/RGO nanocomposites and their visible-light-driven photocatalytic activities. RSC Adv 6:74177–74185. https://doi.org/10.1039/c6ra12068g

    Article  CAS  Google Scholar 

  41. Sharfalddin A, Alzahrani E, Alamoudi M (2016) Micro, sono, photocatalytic degradation of eosin B using ferric oxide doped with cobalt. Am Chem Sci J 13:1–13. https://doi.org/10.9734/acsj/2016/23648

    Article  CAS  Google Scholar 

  42. Feng C, Zheng LP, Yan GY, Zheng MQ (2011) Photocatalytic degradation of Eosin B by ZnS nanoparticles under visible light. Adv Mater Res 236–238:2080–2085. https://doi.org/10.4028/www.scientific.net/AMR.236-238.2080

    Article  CAS  Google Scholar 

  43. Yuan X, Shi L, Zhao J, Zhou S, Guo J (2018) Tunability of magnetization and bandgap in mullite-type Bi2Fe4O9 ceramics through non-magnetic ions. Scripta Mater 146:55–59. https://doi.org/10.1016/j.scriptamat.2017.11.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the Tunisian Ministry of Higher Education and Scientific Research (MHESR) and a public grant over-seen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (Reference No. ANR-10-LABX-0035, Labex NanoSaclay) as well as PHC Slovenian-French Proteus project BI-FR/19-20-PROTEUS-009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Amdouni.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amdouni, W., Yedra, L., Otoničar, M. et al. Annealing temperature effects on BiFeO3 nanoparticles towards photodegradation of Eosin B dye. J Mater Sci 57, 18726–18738 (2022). https://doi.org/10.1007/s10853-022-07829-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07829-x

Navigation